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SP-terms, equations, and theories

Strictly positive terms (or SP-terms) are defined by the grammar

σ ::= pi | > | 3j σ | σ ∧ σ′

where pi are propositional variables

SP-equation takes the form e = (σ ≤ τ ) σ, τ are SP-terms

(SP-implication) NB SP-equations are always Sahlqvist formulas in Modal Logic

(SP-sequent)

SP-theory (or logic) is a set, E , of SP-equations
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Strictly positive terms (or SP-terms) are defined by the grammar

σ ::= pi | > | 3j σ | σ ∧ σ′

where pi are propositional variables

SP-equation takes the form e = (σ ≤ τ ) σ, τ are SP-terms

(SP-implication) NB SP-equations are always Sahlqvist formulas in Modal Logic

(SP-sequent)

SP-theory (or logic) is a set, E , of SP-equations

Edith Hemaspaandra (2001) called terms with pi, ¬pi, ∧, 3i, 2i
poor man’s formulas

Who needs the pauper’s SP-terms, equations, and theories?
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SP-theories in Knowledge Representation

Description logic EL and the OWL 2 EL profile of
the Web Ontology Language OWL 2

SNOMED CT
EntireFemur v StructureOfFemur

FemurPart v StructureOfFemur u ∃partOf.EntireFemur

BoneStructureOfDistalFemur v FemurPart

EntireDistalFemur v BoneStructureOfDistalFemur

DistalFemurPart v BoneStructureOfDistalFemur u ∃partOf.EntireDistalFemur

Comprehensive healthcare terminology with approximately 400 000 definitions

(400 000 concept names and 60 binary relations)

OWL 2 is undecidable, OWL 2 DL (SROIQ) is 2NEXPTIME-complete

EL is tractable w.r.t. first-order semantics, i.e., Kripke modelsvalidity of quasi-equations

consequence relation 1: E |=Kr e
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SP-definable first-order properties

first-order property SP-equations notation
reflexivity p≤3p erefl

transitivity 33p≤3p etrans

symmetry q ∧ 3p≤3(p ∧ 3q) esym

∀x, y, z
(
R(x, y) ∧R(x, z)→ R(y, z)

)
3p ∧ 3q≤3(p ∧ 3q) eeucl

Euclideanness
quasi-order {erefl, etrans} ES4
equivalence {erefl, etrans, esym} ES5

{erefl, etrans, eeucl} E ′S5
∀x, y, z

[
R(x, y) ∧R(x, z)→ 3(p ∧ q) ∧ 3(p ∧ r)≤ ewcon(

R(y, y) ∧R(y, z)
)
∨
(
R(z, z) ∧R(z, y)

)]
3(p ∧ 3q ∧ 3r)

linear quasi-order {erefl, etrans, ewcon} ES4.3
∀x, y

[
R(x, y)→ ∃z

(
R(x, z) ∧R(z, y)

)]
3p ≤ 33p edense

density
∀x, y, z

(
R(x, y) ∧R(x, z)→ (y = z)

)
3p ∧ 3q≤3(p ∧ q) efun

functionality
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SP-undefinable first-order properties

by a general necessary condition for SP-definability

first-order property modal formula(s) notation
∀x, y, z

(
R(x, y) ∧R(y, z)→

pseudo-transitivity R(x, z) ∨ (x = z)
)

33p ≤ p ∨ 3p ϕptrans

pseudo-equivalence esym , ϕptrans Diff
∀x, y, z

(
R(x, y) ∧R(x, z)→ 3p ∧ 3q≤3(p ∧ q)∨ ϕwcon

R(y, z) ∨R(z, y) ∨ (y = z)
)

3(p ∧ 3q) ∨ 3(q ∧ 3q)
weak connectedness
transitivity and weak connectedness etrans , ϕwcon K4.3
∀x, y, z

(
R(x, y) ∧R(x, z)→

confluence ∃u
(
R(y, u) ∧R(z, u)

))
32p ≤ 23p ϕconf

transitivity and confluence etrans , ϕconf K4.2
transitivity and etrans , 23p ≤ 32p K4.1
∀x∃y (R(x, y) ∧ ∀z (R(y, z)→ (y = z)))
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For any E ⊇ ES4, KrE is closed under subframes
S4.1-frames and S4.2-frames are not SP-definable

But
{
erefl, etrans, ewcon

}
defines S4.3-frames
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S4.1-frames and S4.2-frames are not SP-definable

But
{
erefl, etrans, ewcon

}
defines S4.3-frames

Svyatlovsky’s talk
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SP-theories: algebraic view

Bounded meet-semilattices with normal monotone operators (or SLOs)
A = (A,∧,>,3i) (σ ≤ τ is a shorthand for σ ∧ τ = σ)

(σ = τ is a shorthand for σ ≤ τ and τ ≤ σ)

– p ∧ p = p

– p ∧ q = q ∧ p

– p ∧ (q ∧ r) = (p ∧ q) ∧ r

– p ≤ >

– 3i(p ∧ q) ≤ 3iq (monotonicity)
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SP-theories: algebraic view

Bounded meet-semilattices with normal monotone operators (or SLOs)
A = (A,∧,>,3i) (σ ≤ τ is a shorthand for σ ∧ τ = σ)

(σ = τ is a shorthand for σ ≤ τ and τ ≤ σ)

– p ∧ p = p

– p ∧ q = q ∧ p

– p ∧ (q ∧ r) = (p ∧ q) ∧ r

– p ≤ >

– 3i(p ∧ q) ≤ 3iq (monotonicity)

Birkhoff’s equational calculus
ϕ = ϕ E `SLO e

ϕ = ψ/ψ = ϕ

ϕ = ψ, ψ = χ/ϕ = χ

ϕ = ψ, α = β/ϕ(α/p) = ψ(β/p)

consequence relation 2: E |=SLO e ⇐⇒ E `SLO e

∀A (A |= E =⇒ A |= e)
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SP-theories in Provability Logic

Reflection Calculus RC (Beklemishev 2012, Dashkov 2012)

Birkhoff’s equational calculus for SLOs

+
3n3nσ ≤ 3nσ, 3nσ ≤ 3mσ, 3nσ ∧ 3mσ ≤ 3n(σ ∧ 3mσ) n > m

axiomatises the SP-fragment of G. Japaridze’s provability logic GLP

– RC is tractable, while GLP is PSpace-complete

– RC is complete w.r.t. finite Kripke frames
while GLP is Kripke incomplete

– RC preserves main proof-theoretic applications of GLP

– RC allows more general arithmetical interpretations
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SP-theories in Provability Logic

Reflection Calculus RC (Beklemishev 2012, Dashkov 2012)

Birkhoff’s equational calculus for SLOs

+
3n3nσ ≤ 3nσ, 3nσ ≤ 3mσ, 3nσ ∧ 3mσ ≤ 3n(σ ∧ 3mσ) n > m

axiomatises the SP-fragment of G. Japaridze’s provability logic GLP

– RC is tractable, while GLP is PSpace-complete

– RC is complete w.r.t. finite Kripke frames
while GLP is Kripke incomplete

– RC preserves main proof-theoretic applications of GLP

– RC allows more general arithmetical interpretations

Ditch Boolean modal logics ! Use
SP

-th
eories ?
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The problem

Kripke completeness: is a given SP-theory E complete w.r.t. its Kripke frames?

for all SP-equations e, E |=SLO e ⇐⇒ E |=Kr e
?
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for all SP-equations e, E |=SLO e ⇐⇒ E |=Kr e
?

by Sahlqvist completeness, E |=Kr e ⇐⇒ E |=BAO e ⇐⇒ E `K e

BAO-to-SLO conservativity:

for all SP-equations e, E |=SLO e ⇐⇒ E |=BAO e
?

Axiomatisability: does E axiomatise the SP-fragment of the Boolean

modal logic LE = K⊕ E?

for all SP-equations e, E |=SLO e ⇐⇒ e ∈ LE?
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Incomplete SP-theories

(Kurucz, Tanaka, Wolter & Z, 2010)

E1 = {3p ≤ p} with FO-correspondent ∀x, y
(
R(x, y)→ (x = y)

)
Proof: E1 |=Kr p ∧ 3> ≤ 3p but E1 6|=SLO p ∧ 3> ≤ 3p

⊥

a

>

p

SLO ‘general’ frame
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⊥
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Incomplete SP-theories

(Kurucz, Tanaka, Wolter & Z, 2010)

E1 = {3p ≤ p} with FO-correspondent ∀x, y
(
R(x, y)→ (x = y)

)
Proof: E1 |=Kr p ∧ 3> ≤ 3p but E1 6|=SLO p ∧ 3> ≤ 3p

⊥

a

>

p

SLO ‘general’ frame

E2 = {3p ≤ 3q} with FO-correspondent R = ∅

in modal logic, Kripke incomplete logics are ‘rare’ and ‘complex’

Kripke completeness of SP
-th

eories is undecidable
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Completeness by canonicity in modal logic

Kripke frame F = (W,Ri) full complex BAO

F+ = (2W ,∪,∩,−W , ∅,W,3+
i ) 3

+
i X = {w ∈W | ∃v ∈ X Ri(w, v)}

BAO A |= L FA = Uf (A) F+
A

F+
A |= L =⇒ L is canonical and complete

Can we do something similar for SP-theories and SLOs?

no canonical models
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Completeness by complexity

Kripke frame F = (W,Ri) SLO-type reduct of full complex BAO

F? = (2W ,∩,W,3+
i ) 3

+
i X = {w ∈W | ∃v ∈ X Ri(w, v)}

E |=SLO e =⇒ E |=Kr e
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Completeness by complexity

Kripke frame F = (W,Ri) SLO-type reduct of full complex BAO

F? = (2W ,∩,W,3+
i ) 3

+
i X = {w ∈W | ∃v ∈ X Ri(w, v)}

E |=SLO e =⇒ E |=Kr e

An SP-theory E is complex if every SLO A |= E is embeddable into F?

for some Kripke frame F |= E

E is complex =⇒ E is complete

Theorem Every SLO is embeddable into F?, for some Kripke frame F

(via elements of SLOs or via filters)

The empty SP-theory is complex, and so complete: |=Kr e implies |=SLO e,
for every SP-equation e

We have a ‘method’ but how to classif
y S
P-th

eories?
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Sahlqvist correspondence for SP-equations

SP-terms as Kripke models

σ = 3(r ∧ 3q ∧ 3p) Mσ = (Wσ, Rσ, vσ)

Tσ

r

p q
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Sahlqvist correspondence for SP-equations

SP-terms as Kripke models

σ = 3(r ∧ 3q ∧ 3p) Mσ = (Wσ, Rσ, vσ)

Tσ

r

p q

M, w |= σ ⇐⇒ ∃h : Mσ →M with h(rσ) = w

|=Kr σ ≤ τ ⇐⇒ ∃h : Mτ →Mσ with h(rτ) = rσ
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Sahlqvist correspondence for SP-equations

SP-terms as Kripke models

σ = 3(r ∧ 3q ∧ 3p) Mσ = (Wσ, Rσ, vσ)

Tσ

r

p q

M, w |= σ ⇐⇒ ∃h : Mσ →M with h(rσ) = w

|=Kr σ ≤ τ ⇐⇒ ∃h : Mτ →Mσ with h(rτ) = rσ

Sahlqvist’s correspondence:

every SP-equation e = (σ ≤ τ ) has the FO-correspondent

Ψe = ∀~vin σ

( ∧
Rσ(v,v′)

R(v, v′) →

∃~uin τ
(
(rσ = rτ) ∧

∧
Rτ (u,u′)

R(u, u′) ∧
∧

u∈vτ (p)

∨
v∈vσ(p)

(u = v)
))

for any Kripke frame F, F |= e ⇐⇒ F |= Ψe
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Completeness and FO-correspondents

Systematic approach: investigate completeness of SP-theories
based on the form of their FO-correspondents

– universal Horn formulas without = ∀x, y, z
(
R(x, y) ∧R(x, z)→ R(y, z)

)
– universal Horn formulas with = ∀x, y, z

(
R(x, y) ∧R(x, z)→ (y = z)

)
– formulas with ∨ ∀x, y, z

[
R(x, y)∧R(x, z)→

(
R(y, y)∧R(y, z)

)
∨
(
R(z, z)∧R(z, y)

)]
– formulas with ∃ ∀x, y

[
R(x, y)→ ∃z

(
R(x, z) ∧R(z, y)

)]
NB no ∃ closed under subframes
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Systematic approach: investigate completeness of SP-theories
based on the form of their FO-correspondents

– universal Horn formulas without = ∀x, y, z
(
R(x, y) ∧R(x, z)→ R(y, z)

)
– universal Horn formulas with = ∀x, y, z

(
R(x, y) ∧R(x, z)→ (y = z)

)
– formulas with ∨ ∀x, y, z

[
R(x, y)∧R(x, z)→

(
R(y, y)∧R(y, z)

)
∨
(
R(z, z)∧R(z, y)

)]
– formulas with ∃ ∀x, y

[
R(x, y)→ ∃z

(
R(x, z) ∧R(z, y)

)]
NB no ∃ closed under subframes

– Every complete subframe SP-theory E has the

polynomial model property, and so is decidable in CONP if E is finite

– Every complete and finite SP-theory with Horn correspondents
is decidable in PTIME
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SP-equations with Horn correspondents

rooted profile π
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SP-equations with Horn correspondents

rooted profile π

‘standard’ equations

eπ = 333p ≤ 3p type 1

e′π = p1 ∧ 3(p2 ∧ 3(p3 ∧ 3p4)) ≤ p1 ∧ 3p4 type 2

Theorem Equations eπ of type 1 (e′π of type 2) for rooted π
axiomatise complex, and so complete theoriese.g., 31 . . .3np≤30p

‘non-standard’ equations

p ≤ 33(p ∧ 3p) for π = eπ = e′π = (p ≤ 3p)

33p ∧ 333p ≤ 3p for are incomplete

Normal modal logics axiomatisable by SP-equations can be

undecidable (Kikot, Shapirovsky, Zolin 2014):
3R3P 3R p≤3P p, 3Q3R p≤3Q p, 3Q3P p≤3P p

however, the corresponding SP-theory is tractable
Wormshop, Moscow 2017 13



SP-equations with existential correspondents

Theorem: Any EL-theory E consisting of equations e = (σ ≤ τ ) such that

– every variable in σ occurs in it only once,

– τ corresponds to the tree Tτ = (Wτ , Rτ , Vτ ) with

– |Wτ | ≥ 2 and all points in any Vτ (p) are leaves of Tτ ,

– Vτ (p) ∩ Vτ (q) = ∅ whenever p 6= q
is complex, and so complete

Example: density axiom edense = 3p ≤ 33p with

Ψedense = ∀x, y
[
R(x, y)→ ∃z

(
R(x, z) ∧R(z, y)

)]

generalised density
p q p q

3p ∧ 3q ≤ 3(3p ∧ 3q)

Wormshop, Moscow 2017 14



SP-equations with disjunctive correspondents

For P = {p0, . . . , pn}, n ≥ 1,

EAltn = {enfun}
enfun =

( ∧
Q⊆P
|Q|=n

3
(∧

Q
)
≤ 3

(∧
P
))

e2fun =
(
3(p ∧ q) ∧ 3(p ∧ r) ∧ 3(q ∧ r) ≤ 3(p ∧ q ∧ r)

)
∀r, x, y, z

(
R(r, x) ∧R(r, y) ∧R(r, z)→ (x = y) ∨ (x = z) ∨ (y = z)

)

not complex EAltn , {erefl, e
n
fun}, {etrans, e

n
fun}, ES4 ∪ {e

n
fun}, E

n
S5 = ES5 ∪ {enfun}

for n ≥ 2

a0 a1 an

⊥

>

|= ES5 ∪ {enfun}
but not embeddable into F?, for any n-functional F
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enfun =
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Q⊆P
|Q|=n
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(∧

Q
)
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(∧
P
))
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(
3(p ∧ q) ∧ 3(p ∧ r) ∧ 3(q ∧ r) ≤ 3(p ∧ q ∧ r)

)
∀r, x, y, z

(
R(r, x) ∧R(r, y) ∧R(r, z)→ (x = y) ∨ (x = z) ∨ (y = z)

)

not complex EAltn , {erefl, e
n
fun}, {etrans, e

n
fun}, ES4 ∪ {e

n
fun}, E

n
S5 = ES5 ∪ {enfun}

for n ≥ 2

a0 a1 an

⊥

>

|= ES5 ∪ {enfun}
but not embeddable into F?, for any n-functional F

not complex {ewcon}, {erefl, ewcon}, ES4.3
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Completeness by syntactic proxies

E is complete if, for any e = (σ ≤ τ ), E |=Kr e =⇒ E |=SLO e
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E is complete if, for any e = (σ ≤ τ ), E |=Kr e =⇒ E |=SLO e

(1) E-normal form E `SLO (τ =
∧
%∈Nτ

%)
reflecting Kripke frames for E

(σ ≤
∧
%∈Nτ

%) is the

syntactic proxy of e

(2) for any % ∈ Nτ , E |=Kr σ ≤ % =⇒ E− |=Kr σ ≤ %
for some complete E− ⊆ E

Complete but not complex

– EAltn Nτ = {≤ n-functional full subtree of Tτ} E− = ∅

– ES4.3 Nτ = {full branches of Tτ} E− = ES4
tractable
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Extensions of ES5
(M. Jackson 2004)

ES5

E3S5

E2S5

E1S5

ES5 + (3p ≤ p) ES5 + (3p ≤ 3q)

Triv

• complex (and so complete)

• complete but not complex

• incomplete
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