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SP-terms, equations, and theories

Strictly positive terms (or SP -terms) are defined by the grammar
o= p, | T | Qo | ono’

where p; are propositional variables

SP-equation takestheform € = (o0 < T) o, are SP-terms

(SP-implication) SP-equations are always Sahlqvist formulas in Modal Logic
(SP-sequent)

SP-theory (orlogic) isaset, £, of SP-equations
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SP-terms, equations, and theories

Strictly positive terms (or SP -terms) are defined by the grammar
o= p, | T | Qo | ono’

where p; are propositional variables

SP-equation takestheform € = (o0 < T) o, are SP-terms

(SP-implication) SP-equations are always Sahlqvist formulas in Modal Logic
(SP-sequent)

SP-theory (orlogic) isaset, £, of SP-equations

Edith Hemaspaandra (2001) called terms with p;, =p;, A, <4, O;
poor man’s formulas

Who needs the pauper’s SP-terms, equations, and theories?
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SP-theories in Knowledge Representation

Description logic £ L and the OWL 2 EL profile of
the Web Ontology Language OWL 2

SNOMED CT i
EntireFemur C  StructureOfFemur { 5ol |
FemurPart £ StructureOfFemur m JpartOf.EntireFemur XII
BoneStructureOfDistalFermur T FemurPart K \/
EntireDistalFemur £ BoneStructureOfDistalFemur i @
DistalFemurPart T BoneStructureOfDistalFemur m IpartOf.EntireDistalFemur

Comprehensive healthcare terminology with approximately 400 000 definitions
(400 000 concept names and 60 binary relations)

OWL 2 is undecidable, OWL 2 DL (SROZQ) is 2NExPTIME-complete

o lidity of i- ti .
EL is tractable i fist.order ssmantics, ie..  Kripke models

consequence relation 1: [ |:Kr e
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SP-definable first-order properties

| first-order property | SP-equations | notation |

reflexivity p<<p €refl

symmetry gNAOp<<C(pACq) Esym

Vz,y,z (R(z,y) A R(z,2) = R(y, 2)) OpAOG<O(PAOQ) | ecu

Euclideanness

quosi—order {ereﬂ7 efrons} Esa

equivalence {ereﬂa Etranss esym} Ess
{erefs etanss €cuci} £é5

Ve, y, z [R(wa y) A R(z, z) — SCPAQ ANOC(pAT) < €wcon

(R(y,y) A R(y,2)) V (R(2,2) A R(2,9))] Olp A Og A Or)

linear quosi-order {ereﬂa €franss ewcon} Esas

Y,y [R(:n, y) — 3z (R(:I:, z) A R(z,y))} Op < OOp €dense

density

Vz,y,z (R(x,y) A R(z, 2) — (y = 2)) OpAOqg<O(pAq) efun

functionality




SP-undefinable first-order properties

(e)Xe] general necessary condition for SP-definability

| first-order property | modal formulac(s) | notation |
Va,y, z (R(il:, y) A R(y, z) —
pseudo-transitivity  R(z,z) V (x =2)) | OOp<pV Op Pptrans
pseudo-equivalence €syms Pptrans Diff
Ve, y, z (R(x,y) A R(x, z) — OpAOg<O(pAq)V Puvcon

R(y,2) VR(z,y) V(y=2)) | <(@ACq)V O(gA Oq)

weak connectedness
tfransitivity and weak connectedness €iranss Puwecon K4.3
Va,y, z (R(wa y) A R(z,z) —
confluence Ju (R(y,u) A R(z,u))) | ¢Op < OOp Peonf
fransitivity and confluence €transs Pconf K4.2
tfransitivity and €irans, OOPp < OOp K4.1
VaIy (R(z,y) AVz (R(y, 2) — (y = 2)))
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Forany € D &s4, Krg is closed under subframes ity o

S4.1-frames and S4.2-frames are not SP-definable

But {eres, eans, €wcon} defines S4.3-frames
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SP-theories: algebraic view

Bounded meet-semilattices with normal monotone operators (or SLOs)
A= (AN, T,0;) (o < risashorthand foro A T = o)
(e = risashorthand fore < rand r < o)
- PApP=Dp
- PANgq=qAp
-pA@AT)=({@AQ AT
-p<T
- Ci(p A q) < ;9 (monotonicity)
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SP-theories: algebraic view

Bounded meet-semilattices with normal monotone operators (or SLOS)
A= (AN, T,0;) (o < tisashorthand fore A 7 = o)
(o0 = risashorthand fore < rand + < o)

- pDAD= - :
pPAP=P Birkhoff’s equational calculus

- PANgQ=qANp

-pA(@AT)=(MPAQ AT o= b/t =

-p< T =1, Y =x/p=x
= Qilp A g) < Oiq  (monotonicity) | o =4, o = B/p(a/p) = ¥(B/p)

consequence relation 2: FASRINIEE— N A I N X

VA A= E = Ak e)
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SP-theories in Provability Logic

Reflection Calculus RC (Beklemishev 2012, Dashkov 2012)

Birkhoff’s equational calculus for SLOs

OpOno < Opo, Opo <00, Cpo A0 < On(o A $n0) D

axiomatises the SP-fragment of G. Japaridze's provability logic GLP

rRC is fractable, whie GLP is PSpace-complete

RC is complete w.rt. finite Kripke frames
while GLP is Kripke incomplete

RC preserves main proof-theoretic applications of GLP

RC allows more general arithmetical interpretations

Wormshop, Moscow 2017



SP-theories in Provability Logic

Reflection Calculus RC vV 2012)

n>m

- RC allows more general arithmetical interpretations
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The problem

Kripke completeness: is a given SP-theory € complete w.r.t. its Kripke frames?

forall SP-equationse, € |Esioe <= Ekkee
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The problem

Kripke completeness: is a given SP-theory € complete w.r.t. its Kripke frames?
forall SP-equationse, £ l=si0e <= &£ l=«k e

by Sahlgvist completeness, € Ekre <= ElFEBaoe < €Etke

BAO-to-SLO conservativity:

for all SP-equationse, &£ Esioe <= & =gnoe

Axiomatisability: does € axiomatise the SP-fragment of the Boolean
modal logic L = K @ E7?

forall SP-equationse, £ |=sioe <= e€ Lg

Wormshop, Moscow 2017 7



Incomplete SP-theories

(Kurucz, Tanaka, Wolter & Z, 2010)

51 — {<>p S p} with FO-correspondent V:B,y(R(:I:,y) — (= y))

Proof: ELEpAOT <Op but E1stop ACT < Op

T
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Incomplete SP-theories

(Kurucz, Tanaka, Wolter & Z, 2010)

51 — {Op S p} with FO-correspondent Vw,y(R(gg,y) — (x = y))

Proof: ELEpAOT <Op but E1stop ACT < Op

T

o A i
1

PR S  with FO-correspondent R = ()

in modal logic, Kripke incomplete logics are ‘rare’ and ‘complex’
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Incomplete SP-theories

o

\
bf{“ RS Y with FO-correspondent R = ()

in modal logic, Kripke incomplete logics are ‘rare’ and ‘complex’
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Completeness by canonicity in modal logic

Kripke frame § = (W, R;) == full complex BAO

‘S"’ = (ZW, U, m, —W, Q), W, <>;|_) Osz{wew | v € X Ri(w,v)}

%;1 =L =— L iscanonicaland complete
Can we do something similar for SP-theories and SLOs?

Wormshop, Moscow 2017 %



Completeness by complexity

Kripke frame § = (W, R;) =P SLO-type reduct of full complex BAO

= 2%,N, W, o) oFX ={we W | e X Ri(w,v)}
el € Fsioe — € ke

Wormshop, Moscow 2017 10



Completeness by complexity

Kripke frame § = (W, R;) =P SLO-type reduct of full complex BAO

3*2(2W907W7<>3—) <>2_X={'w€W|EI'v€XR,-(w,'v)}
el & —sioe — € FE«kee

An SP-theory £ is complex if every SLO 21 |= £ is embeddable into §*
for some Kripke frame § = €

Eiscomplex — £ is complete
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Completeness by complexity

Kripke frame § = (W, R;) =P SLO-type reduct of full complex BAO

8*:(2Wam7w7<>2-) <>2_X={'w€W|EI'v€XR,-('w,'v)}
el & —sioe — € FE«kee

An SP-theory £ is complex if every SLO 21 |= £ is embeddable into §*
for some Kripke frame § = €

Eiscomplex — £ is complete

Theorem Every SLO is embeddable intfo §*, for some Kripke frame &
(via elements of SLOs or via filters)

The empty SP-theory is complex, and so complete: =k, e implies =sio e,
for every SP-equation e
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Completeness by complexity

An SP-theory £ is complex if every SLG embeddable into F*
for some Kripke frame § = €

(via elements of SLOs or via filters)

\

The empty SP-theory is complex, and so complete: =k, e implies =sio e,
for every SPP-equation e
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Sahlqvist correspondence for SP-equations

P
SP-terms as Kripke models

o = O(rAnoOgNOp) == M, =(W,,R,,0,)

Wormshop, Moscow 2017
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Sahlqvist correspondence for SP-equations
P q

SP-terms as Kripke models

o = O(rAOgANAOp) = M, =(W,,R,,0,)

M, wEo < Fh: DM, > Mwith h(r,) = w

Exkeo <1 <= 3h: M, - M, with h(r;) =1, '

Sahlqvist’s correspondence:

every SP-equation e = (o < 7) has the FO-correspondent

v, = va,-n,,( A R(v,v) —
R, (v,v’)

Ry (u,u’)

Jiin - ((re = 7r7) A /\ R(u,u’) A /\ \/ (u = U)))

u€v,-(p) vEL,(p)

for any Kripke frame g, SEe <— FE.

Wormshop, Moscow 2017
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investigate completeness of SP-theories
based on the form of their FO-correspondents

universal Horn formulas without = Vz,y, z (R(z,y) A R(z,z) = R(y, z))
universal Horn formulas with = Ve, y,z (R(z,y) A R(z, z) = (y = z))
formulas with vV vz, y, z [R(z,y) A R(z, z) = (R(y,y) AR(y,2)) V (R(2,2) AR(2,y))]

formulas with 3 = Va,y [R(z, y) — 3z (R(x, 2) A R(z,y))]

no 3 closed under subframes

12



investigate completeness of SP-theories
based on the form of their FO-correspondents

universal Horn formulas without = Vz,y, z (R(z,y) A R(z,z) = R(y, z))
universal Horn formulas with = Ve, y,z (R(z,y) A R(z, z) = (y = z))
formulas with vV va,y, z [R(z,y) A R(z,z) = (R(y,y) AR(y,2)) V (R(z,2) A R(z,y))]

formulas with 3 = Va,y [R(z, y) — 3z (R(x, 2) A R(z,y))]
no 3 closed under subframes

= Every complete subframe SP-theory € has the
polynomial model property, and so is decidable in CONP if £ is finite

= Every complete and finite SP-theory with Horn correspondents
is decidable in P TIME

12



SP-equations with Horn correspondents

~

2,

rooted profile =

Wormshop, Moscow 2017
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SP-equations with Horn correspondents

‘standard’ equations

-7 T e, =000p < Op typel

rooted profile =
el =p1 AO(p2 A O(ps A Opa)) < p1 A Opy

Wormshop, Moscow 2017
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SP-equations with Horn correspondents

‘standard’ equations

- T e, =000p < Op typel

rooted profile =
e, =pi ANO(P2 AO(Ps AOps)) <p1 AOpy  type?2

Ly (=Tl (=10 Bl Equations e, of type 1 (e! of type 2) for rooted =
RN T Y axiomatise complex, and so complete theories
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SP-equations with Horn correspondents

‘standard’ equations

- “s e, =000p < Op typel

rooted profile =

el =p1 AO(p2 AN O(Ps A Ops)) < pr ANOpy type 2

‘non-standard’ equations

p < OO(pAOp) for m= (% ex=¢e =(p < Op)

OOp A OOOp < Op for e I are incomplete

Normal modal logics axiomatisable by SP-equations can be

undecidable (Kikot, Shapirovsky, Zolin 2014):
OrROPORP<SOpp, CQOrRP<SCgp, COpp<<pp

however, the corresponding SP-theory is fractable
Wormshop, Moscow 2017 13



SP-equations with existential correspondents

(Theorem: Any EL-theory £ consisting of equations e = (o < 7) such that
- every variable in & occurs in it only once,
- T corresponds to the tfree 7, = (W, R, V;) with
- |W,| > 2 and all points in any V,.(p) are leaves of T,
- V:(p) N V-(q) = 0 whenever p # g
is complex, and so complete

| J

Example: density axiom egense = Op < OOp  with

\Iledense — Vm, Y I:R(m’ y) — HZ (R($7 Z) A R(Z, y))]
p q p q
generalised density 's\ /4' >
I

Op A Oq < O(Op A $q)

Wormshop, Moscow 2017 14



SP-equations with disjunctive correspondents

For P = {poy...,pn}. n > 1,

e =AY AOPAT)AO(@AT) S O(PAGAT))
vr,x,y, 2 (R(T, z) NR(r,y) NR(r,z) > (z=y)V(z=2)V (y= Z))

GOIRelTel[D8  En, {erom efn} {€irans €8} Esa U {ef}. €55 = Ess U {el,}
forn > 2

-
@)

({ > = €55 U {ef}
o but not embeddable into §F*, for any n-functional
1
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-
@)

({ > = €55 U {ef}
o but not embeddable into §F*, for any n-functional
1

pleifelelnnlolVd  {ewcon}. {erefis €wcon}. Esas

Wormshop, Moscow 2017 15



Completeness by syntactic proxies

£ is complete if, forany e = (o < 1), E |:Kr e — E IZSLO (&
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Completeness by syntactic proxies
£ is complete if, forany e = (o < 1), E |:Kr e — E ':SLO (&

reflecting Kripke frames for £

(1) £-normal form FAREITN Cal= /\ 0)

0EN. (o < /\geNf o) isthe
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syntactic proxy of e
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forsome complete £~ C &£
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Completeness by syntactic proxies
£ is complete if, forany e = (o < 1), E |:Kr e — E '=5|_0 (&

reflecting Kripke frames for £

(o < /\geNf o) isthe
syntactic proxy of e

EEkwo<p = €& Exo<lop

forsome complete £~ C &£

(1) £-normal form FAREITN Cal= /\ 0)
QEN’T

(2) forany g € N,,

Complete but not complex

- N, = {< n-functional full subtree of T} E- =0
- N, = {full branches of ¥, } £ = Eq,
fractable

Wormshop, Moscow 2017 16



Extensions of £g5

Triv

£ss + (Op < p) /\./\ Ess + (Op < ©q)
£ss %

3
€ss :

Ess ©
e complex (and so complete)

e complete but not complex
e incomplete

Wormshop, Moscow 2017
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