Kripke completeness of strictly positive modal logics

Michael Zakharyaschev

Department of Computer Science and Information Systems

Birkbeck, University of London

Joint work with Stanislav Kikot, Agi Kurucz, Yoshihito Tanaka and Frank Wolter

supported by UK EPSRC grant iTract EP/M012670

Based on the (submitted) paper

S. Kikot, A. Kurucz, Y. Tanaka, F. Wolter & M. Zakharyaschev

Kripke Completeness of Strictly Positive Modal Logics over Meet-semilattices with Operators

https://arxiv.org/abs/1708.03403

$\mathcal{SP}\text{-terms},$ equations, and theories

Strictly positive terms (or \mathcal{SP} -terms) are defined by the grammar $\sigma ::= p_i \mid \top \mid \diamond_j \sigma \mid \sigma \land \sigma'$

where p_i are propositional variables

 \mathcal{SP} -equationtakes the form $e = (\sigma \leq \tau)$ σ, τ are \mathcal{SP} -terms(\mathcal{SP} -implication)NB \mathcal{SP} -equations are always Sahlqvist formulas in Modal Logic(\mathcal{SP} -sequent)

 \mathcal{SP} -theory (or logic) is a set, \mathcal{E} , of \mathcal{SP} -equations

$\mathcal{SP}\text{-terms},$ equations, and theories

Strictly positive terms (or \mathcal{SP} -terms) are defined by the grammar $\sigma ::= p_i \mid \top \mid \diamond_j \sigma \mid \sigma \land \sigma'$

where p_i are propositional variables

 \mathcal{SP} -equationtakes the form $e = (\sigma \leq \tau)$ σ, τ are \mathcal{SP} -terms(\mathcal{SP} -implication)NB \mathcal{SP} -equations are always Sahlqvist formulas in Modal Logic(\mathcal{SP} -sequent)NB \mathcal{SP} -equations are always Sahlqvist formulas in Modal Logic

 \mathcal{SP} -theory (or logic) is a set, \mathcal{E} , of \mathcal{SP} -equations

Edith Hemaspaandra (2001) called terms with $p_i, \neg p_i, \land, \diamond_i, \Box_i$

poor man's formulas

Who needs the **pauper's** SP-terms, equations, and theories?

$\mathcal{SP}\text{-theories}$ in Knowledge Representation

Description logic \mathcal{EL} and the OWL 2 EL profile of

the Web Ontology Language OWL 2

SNOMED CT

EntireFemur	\Box	StructureOfFemur		
FemurPart	\Box	StructureOfFemur □ ∃partOf.EntireFemur		
BoneStructureOfDistalFemur	\Box	FemurPart		
EntireDistalFemur	\Box	BoneStructureOfDistalFemur		
DistalFemurPart		BoneStructureOfDistalFemur □ ∃partOf.EntireDistalFemur		
Comprehensive healthcare terminology with approximately 400 000 definitions				

(400 000 concept names and 60 binary relations)

re

OWL 2 is undecidable, OWL 2 DL (SROIQ) is **2NEXPTIME-complete**

 \mathcal{EL} is tractable

validity of quasi-equations w.r.t. first-order semantics, i.e.,

Kripke models

consequence relation 1: \mathcal{E} =

Wormshop, Moscow 2017

$\mathcal{SP}\text{-definable first-order properties}$

first-order property	\mathcal{SP} -equations	notation
reflexivity	$p \leq \Diamond p$	$e_{\it refl}$
transitivity	$\diamond \diamond p \leq \diamond p$	e_{trans}
symmetry	$q \wedge \diamond p \leq \diamond (p \wedge \diamond q)$	$oldsymbol{e}_{sym}$
$orall x,y,z\left(R(x,y)\wedge R(x,z) ightarrow R(y,z) ight)$	$\Diamond p \land \Diamond q \leq \Diamond (p \land \Diamond q)$	$e_{ ext{eucl}}$
Euclideanness		
quasi-order	$\{e_{refl}, e_{trans}\}$	$\mathcal{E}_{\mathrm{S4}}$
equivalence	$\{e_{\it refl}, e_{\it trans}, e_{\it sym}\}$	$\mathcal{E}_{ ext{S5}}$
	$\{e_{\it refl}, e_{\it trans}, e_{\it eucl}\}$	$\mathcal{E}_{ ext{S5}}^{\prime}$
$orall x,y,z \left[R(x,y) \wedge R(x,z) ightarrow W ightarrow W ightarrow R(x,z) ightarrow W ightarrow R(x,z) ightarrow W ightarrow R(x,z) ightarrow V ightarrow R(x,z) ightarrow R(x,z) ightarrow V ightarrow R(x,z) ightarrow V ightarrow R(x,z) ightarrow R(x,z) ightarrow R(x,z) ightarrow V ightarrow R(x,z) igh$	$(\diamond(p\wedge q)\wedge\diamond(p\wedge r)\leq$	$e_{\scriptscriptstyle WCON}$
$ig(R(y,ar{y})\wedge R(y,z))ee\left(R(z,z)\wedge R(z,y) ight)igg]$	$\Diamond (p \land \Diamond q \land \Diamond r)$	
linear quasi-order	$\{e_{\it refl}, e_{\it trans}, e_{\it wcon}\}$	$\mathcal{E}_{\mathrm{S4.3}}$
$igert arphi, y \left[R(x,y) ightarrow \exists z \left(R(x,z) \wedge R(z,y) ight) ight]$	$\diamond p \leq \diamond \diamond p$	e_{dense}
density		
$orall x,y,z\left(R(x,y) \wedge R(x,z) ightarrow (y=z) ight)$	$\Diamond p \land \Diamond q \leq \Diamond (p \land q)$	e_{fun}
functionality		

\mathcal{SP} -undefinable first-order properties

by a general necessary condition for \mathcal{SP} -definability

first-order property	modal formula(s)	notation
$orall x,y,zig(R(x,y)\wedge R(y,z) ightarrow$		
pseudo-transitivity $R(x,z) ee (x=z) ig)$	$\diamond \diamond p \leq p \lor \diamond p$	$arphi_{ptrans}$
pseudo-equivalence	$e_{sym},arphi_{ptrans}$	Diff
$orall x,y,zig(R(x,y)\wedge R(x,z) ightarrow$	$\diamond p \wedge \diamond q \leq \diamond (p \wedge q) \lor$	$arphi_{wcon}$
R(y,z) ee R(z,y) ee (y=z) ig)	$\diamond(p\wedge\diamond q)\lor\diamond(q\wedge\diamond q)$	
weak connectedness		
transitivity and weak connectedness	$e_{trans}, arphi_{wcon}$	K4.3
$orall x,y,zig(R(x,y)\wedge R(x,z) ightarrow$		
confluence $\exists u \left(R(y,u) \land R(z,u) ight) ight)$	${\diamond}{\Box}p \leq {\Box}{\diamond}p$	$arphi_{\mathit{conf}}$
transitivity and confluence	$e_{trans}, arphi_{conf}$	K4.2
transitivity and	$e_{trans}, \ \Box \Diamond p \leq \Diamond \Box p$	K4.1
$orall x \exists y \left(R(x,y) \land orall z \left(R(y,z) ightarrow (y=z) ight) ight)$		

\mathcal{SP} -undefinable first-order properties

by a general necessary condition for \mathcal{SP} -definability

first-order property	modal formula(s)	notation
$orall x,y,z(R(x,y)\wedge R(y,z) ightarrow$		
pseudo-transitivity $R(x,z) \lor (x=z) ig)$	$\Diamond \Diamond p \leq p \lor \Diamond p$	$arphi_{ptrans}$
pseudo-equivalence	$e_{sym},arphi_{ptrans}$	Diff
$orall x,y,z\left(R(x,y)\wedge R(x,z) ightarrow$	$\Diamond p \land \Diamond q \leq \Diamond (p \land q) \lor$	$arphi_{wcon}$
R(y,z) ee R(z,y) ee (y=z) ig)	$\diamond(p\wedge\diamond q)\lor\diamond(q\wedge\diamond q)$	
weak connectedness		
transitivity and weak connectedness	$e_{trans}, arphi_{wcon}$	K4.3
$orall x,y,zig(R(x,y)\wedge R(x,z) ightarrow$		
confluence $\exists u \left(R(y,u) \land R(z,u) ight) ight)$	$\Diamond \Box p \leq \Box \Diamond p$	$arphi_{\mathit{conf}}$
transitivity and confluence	$e_{trans}, arphi_{conf}$	K4.2
transitivity and	$e_{trans}, \ \Box \Diamond p \leq \Diamond \Box p$	K4.1
$orall x \exists y \left(R(x,y) \land orall z \left(R(y,z) ightarrow (y=z) ight) ight)$		

For any $\mathcal{E} \supseteq \mathcal{E}_{S4}$, Kr $_{\mathcal{E}}$ is closed under subframes

S4.1-frames and S4.2-frames are not \mathcal{SP} -definable

But $\{e_{refl}, e_{trans}, e_{wcon}\}$ defines S4.3-frames

\mathcal{SP} -undefinable first-order properties

by a general necessary condition for \mathcal{SP} -definability

first-order property	modal formula(s)	notation
$orall x,y,z(R(x,y)\wedge R(y,z) ightarrow$		
pseudo-transitivity $R(x,z) ee (x=z) ig)$	$\Diamond \Diamond p \leq p \lor \Diamond p$	$arphi_{\it ptrans}$
pseudo-equivalence	$e_{sym},arphi_{ptrans}$	Diff
$orall x,y,zig(R(x,y)\wedge R(x,z) ightarrow$	$\Diamond p \land \Diamond q \leq \Diamond (p \land q) \lor$	$arphi_{wcon}$
R(y,z) ee R(z,y) ee (y=z) ig)	$\diamond(p\wedge\diamond q)\lor\diamond(q\wedge\diamond q)$	
weak connectedness		
transitivity and weak connectedness	$e_{trans}, arphi_{wcon}$	K4.3
$orall x,y,zig(R(x,y)\wedge R(x,z) ightarrow$	Svyatlo	vsky's talk
confluence $\exists u \left(R(y,u) \land R(z,u) ight) ight)$	$\Diamond \Box p \leq \Box \Diamond p$	$arphi_{\mathit{conf}}$
transitivity and confluence	$e_{trans}, arphi_{conf}$	K4.2
transitivity and	$e_{trans}, \ \Box \Diamond p \leq \Diamond \Box p$	K4.1
$orall x \exists y \left(R(x,y) \land orall z \left(R(y,z) ightarrow (y=z) ight) ight)$		

For any $\mathcal{E} \supseteq \mathcal{E}_{\mathrm{S4}}$, Kr $_{\mathcal{E}}$ is closed under subframes

S4.1-frames and S4.2-frames are not \mathcal{SP} -definable

But $\{e_{refl}, e_{trans}, e_{wcon}\}$ defines S4.3-frames

\mathcal{SP} -theories: algebraic view

Bounded meet-semilattices with normal monotone operators (or SLOS)

 $\mathfrak{A} = (A, \wedge, \top, \diamond_i) \qquad (\sigma \leq \tau \text{ is a shorthand for } \sigma \wedge \tau = \sigma)$ $(\sigma = \tau \text{ is a shorthand for } \sigma \leq \tau \text{ and } \tau \leq \sigma)$

- $p \wedge p = p$
- $p \wedge q = q \wedge p$
- $p \wedge (q \wedge r) = (p \wedge q) \wedge r$
- $p \leq \top$
- $\diamond_i (p \wedge q) \leq \diamond_i q$ (monotonicity)

\mathcal{SP} -theories: algebraic view

Bounded meet-semilattices with normal monotone operators (or SLOS)

 $\mathfrak{A} = (A, \wedge, \top, \diamond_i) \qquad (\sigma \leq \tau \text{ is a shorthand for } \sigma \wedge \tau = \sigma)$ $(\sigma = \tau \text{ is a shorthand for } \sigma \leq \tau \text{ and } \tau \leq \sigma)$

 $\begin{array}{l} -p \wedge p = p \\ -p \wedge q = q \wedge p \\ -p \wedge (q \wedge r) = (p \wedge q) \wedge r \\ -p \leq \top \\ -\phi_i(p \wedge q) \leq \phi_i q \quad (\text{monotonicity}) \end{array} \end{array} \\ \begin{array}{l} \text{Birkhoff's equational calculus} \\ \varphi = \varphi \\ \varphi = \psi / \psi = \varphi \\ \varphi = \psi / \psi = \varphi \\ \varphi = \psi , \ \psi = \chi / \varphi = \chi \\ \varphi = \psi , \ \omega = \beta / \varphi(\alpha / p) = \psi(\beta / p) \end{array}$

consequence relation 2:
$$\begin{array}{c} \mathcal{E} \models_{\mathsf{SLO}} e \iff \mathcal{E} \vdash_{\mathsf{SLO}} e \\ \downarrow \\ \forall \mathfrak{A} \ (\mathfrak{A} \models \mathcal{E} \implies \mathfrak{A} \models e) \end{array}$$

$\mathcal{SP}\text{-theories}$ in Provability Logic

axiomatises the *SP*-fragment of G. Japaridze's provability logic GLP

- RC is tractable, while GLP is PSpace-complete
- RC is complete w.r.t. finite Kripke frames

while GLP is Kripke incomplete

- RC preserves main proof-theoretic applications of GLP
- RC allows more general arithmetical interpretations

SP-theories in Provability Logic

The problem

Kripke completeness: is a given \mathcal{SP} -theory \mathcal{E} complete w.r.t. its Kripke frames?

for all SP-equations e, $\mathcal{E} \models_{SLO} e \iff \mathcal{E} \models_{Kr} e$

The problem

Kripke completeness: is a given \mathcal{SP} -theory \mathcal{E} complete w.r.t. its Kripke frames?

for all SP-equations e, $\mathcal{E} \models_{SLO} e \iff \mathcal{E} \models_{Kr} e$ by Sahlqvist completeness, $\mathcal{E} \models_{Kr} e \iff \mathcal{E} \models_{BAO} e \iff \mathcal{E} \vdash_{K} e$ BAO-to-SLO conservativity: for all SP-equations e, $\mathcal{E} \models_{SLO} e \iff \mathcal{E} \models_{BAO} e$

The problem

Kripke completeness: is a given \mathcal{SP} -theory \mathcal{E} complete w.r.t. its Kripke frames?

for all SP-equations e, $\mathcal{E} \models_{SLO} e \iff \mathcal{E} \models_{Kr} e$ by Sahlqvist completeness, $\mathcal{E} \models_{Kr} e \iff \mathcal{E} \models_{BAO} e \iff \mathcal{E} \vdash_{K} e$

BAO-to-SLO conservativity:

for all SP-equations e, $\mathcal{E} \models_{\mathsf{SLO}} e \iff \mathcal{E} \models_{\mathsf{BAO}} e$

Axiomatisability: does ${\mathcal E}$ axiomatise the ${\mathcal {SP}}$ -fragment of the Boolean

modal logic $\mathcal{L}_{\mathcal{E}} = \mathbf{K} \oplus \mathcal{E}$?

for all
$$SP$$
-equations e , $\mathcal{E} \models_{\mathsf{SLO}} e \iff e \in \mathcal{L}_{\mathcal{E}}$

Incomplete SP-theories

Incomplete \mathcal{SP} -theories

in modal logic, Kripke incomplete logics are 'rare' and 'complex'

in modal logic, Kripke incomplete logics are 'rare' and 'complex'

Completeness by canonicity in modal logic

Kripke frame $\mathfrak{F} = (W, R_i)$ full complex BAO

$$\mathfrak{F}^{+} = (2^{W}, \cup, \cap, -^{W}, \emptyset, W, \diamondsuit_{i}^{+}) \quad \diamondsuit_{i}^{+} X = \{w \in W \mid \exists v \in X R_{i}(w, v)\}$$

$$\mathsf{BAO} \ \mathfrak{A} \models L \quad \longrightarrow \quad \mathfrak{F}_{\mathfrak{A}} = Uf(\mathfrak{A}) \quad \longrightarrow \quad \mathfrak{F}_{\mathfrak{A}}^{+}$$

$$\mathfrak{F}_{\mathfrak{A}}^{+} \models L \quad \Longrightarrow \quad L \text{ is canonical and complete}$$

Can we do something similar for \mathcal{SP} -theories and SLOs?

no canonical models

Completeness by complexity

Kripke frame $\mathfrak{F} = (W, R_i)$ \longrightarrow SLO-type reduct of full complex BAO

$$\mathfrak{F}^{\star} = (2^{W}, \cap, W, \diamondsuit_{i}^{+}) \qquad \qquad \diamondsuit_{i}^{+} X = \{w \in W \mid \exists v \in X \ R_{i}(w, v)\}$$
$$\longrightarrow \qquad \mathcal{E} \models_{\mathsf{SLO}} e \implies \mathcal{E} \models_{\mathsf{Kr}} e$$

Completeness by complexity

Kripke frame $\mathfrak{F} = (W, R_i)$ \longrightarrow SLO-type reduct of full complex BAO $\mathfrak{F}^{\star} = (2^W, \cap, W, \diamondsuit_i^+)$ $\diamondsuit_i^+ X = \{w \in W \mid \exists v \in X \ R_i(w, v)\}$ $\longrightarrow \mathcal{E} \models_{\mathsf{SLO}} e \implies \mathcal{E} \models_{\mathsf{Kr}} e$

An \mathcal{SP} -theory \mathcal{E} is **complex** if every SLO $\mathfrak{A} \models \mathcal{E}$ is embeddable into \mathfrak{F}^* for some Kripke frame $\mathfrak{F} \models \mathcal{E}$

$${\mathcal E}$$
 is complex \implies ${\mathcal E}$ is complete

Completeness by complexity

Kripke frame $\mathfrak{F} = (W, R_i)$ \longrightarrow SLO-type reduct of full complex BAO $\mathfrak{F}^{\star} = (2^W, \cap, W, \diamondsuit_i^+)$ $\diamondsuit_i^+ X = \{w \in W \mid \exists v \in X \ R_i(w, v)\}$ $\longrightarrow \mathcal{E} \models_{\mathsf{SLO}} e \implies \mathcal{E} \models_{\mathsf{Kr}} e$

An \mathcal{SP} -theory \mathcal{E} is **complex** if every SLO $\mathfrak{A} \models \mathcal{E}$ is embeddable into \mathfrak{F}^* for some Kripke frame $\mathfrak{F} \models \mathcal{E}$

$${\mathcal E} ext{ is complex } \implies {\mathcal E} ext{ is complete}$$

Theorem Every SLO is embeddable into \mathfrak{F}^\star , for some Kripke frame \mathfrak{F}

(via elements of SLOs or via filters)

The empty SP-theory is complex, and so complete: $\models_{Kr} e$ implies $\models_{SLO} e$, for every SP-equation e

Completeness by complexity SLO-type reduct of full complex BAG Kripke frame $\mathfrak{F} = (W, R_i)$ $\diamond_i^+ X = \{ w \in W \in \mathcal{P} \}$ $\mathfrak{F}^{\star} = (2^{W}, \cap, W, \diamond_{i}^{+})$ $\Lambda R_i(w,v)$ $\mathcal{E} \models_{\mathsf{SLO}} e$ An \mathcal{SP} -theory \mathcal{E} is **complex** if every SLG ₁s embeddable into 😿 for some Kripke frame $\mathfrak{F} \models \mathcal{E}$ \mathcal{E} is comp \mathcal{E} is complete Theorem Every St , beddable into \mathfrak{F}^\star , for some Kripke frame \mathfrak{F} We have c (via elements of SLOs or via filters) The empty SP-theory is complex, and so complete: $\models_{Kr} e$ implies $\models_{SLO} e$, for every \mathcal{SP} -equation e

Sahlqvist correspondence for \mathcal{SP} -equations

Sahlqvist correspondence for \mathcal{SP} -equations

Sahlqvist correspondence for \mathcal{SP} -equations

every \mathcal{SP} -equation $e = (\sigma \leq \tau)$ has the FO-correspondent

$$egin{aligned} \Psi_e &= orall ec{v}_{i \cap \, \sigma} \left(igwedge _{R_\sigma(v,v')} R(v,v')
ight.
ightarrow \ & \exists ec{u}_{i \cap \, au} \left((r_\sigma = r_ au) \wedge igwedge _{R_ au(u,u')} R(u,u') \wedge igwedge _{u \in \mathfrak{v}_ au(p)} igvedge _{v \in \mathfrak{v}_\sigma(p)} (u=v)
ight)
ight) \end{aligned}$$

for any Kripke frame \mathfrak{F} ,

Wormshop, Moscow 2017

Completeness and FO-correspondents

Systematic approach: investigate completeness of \mathcal{SP} -theories based on the form of their FO-correspondents

- universal Horn formulas without $= \quad \forall x,y,z \left(R(x,y) \land R(x,z)
 ightarrow R(y,z)
 ight)$
- universal Horn formulas with = $\forall x, y, z \left(R(x, y) \land R(x, z) \rightarrow (y = z) \right)$
- formulas with $\lor \quad \forall x, y, z \left[R(x, y) \land R(x, z) \rightarrow \left(R(y, y) \land R(y, z) \right) \lor \left(R(z, z) \land R(z, y) \right) \right]$
- formulas with $\exists \forall x, y [R(x, y) \rightarrow \exists z (R(x, z) \land R(z, y))]$ NB no $\exists \longrightarrow$ closed under subframes

Completeness and FO-correspondents

Systematic approach: investigate completeness of \mathcal{SP} -theories based on the form of their FO-correspondents

- universal Horn formulas without $= \quad \forall x,y,z \left(R(x,y) \land R(x,z)
 ightarrow R(y,z)
 ight)$
- universal Horn formulas with = $\forall x, y, z \left(R(x, y) \land R(x, z) \rightarrow (y = z) \right)$
- formulas with $\lor \quad \forall x, y, z \left[R(x, y) \land R(x, z) \rightarrow \left(R(y, y) \land R(y, z) \right) \lor \left(R(z, z) \land R(z, y) \right) \right]$
- formulas with $\exists \forall x, y [R(x, y) \rightarrow \exists z (R(x, z) \land R(z, y))]$ NB no $\exists \longrightarrow$ closed under subframes
- Every complete subframe SP-theory E has the polynomial model property, and so is decidable in CONP if E is finite
 Every complete and finite SP-theory with Horn correspondents is decidable in PTIME

rooted profile π

'standard' equations

 $e_{\pi}= \diamond \diamond \diamond p \leq \diamond p$ type 1

$$e'_{\pi}=p_1\wedge \diamond (p_2\wedge \diamond (p_3\wedge \diamond p_4))\leq p_1\wedge \diamond p_4$$
 type 2

'standard' equations

 $e_{\pi}= \diamond \diamond \diamond p \leq \diamond p$ type 1

rooted profile π

 $e'_{\pi} = p_1 \wedge \diamond (p_2 \wedge \diamond (p_3 \wedge \diamond p_4)) \leq p_1 \wedge \diamond p_4$ type 2

TheoremEquations e_{π} of type 1 (e'_{π} of type 2) for rooted π e.g., $\diamond_1 \dots \diamond_n p \leq \diamond_0 p$ axiomatise complex, and so complete theories

'standard' equations

 $e_{\pi}= \diamond \diamond \diamond p \leq \diamond p$ type 1

rooted profile π

$$e'_{\pi} = p_1 \wedge \diamond (p_2 \wedge \diamond (p_3 \wedge \diamond p_4)) \leq p_1 \wedge \diamond p_4 \quad ext{ type 2}$$

TheoremEquations e_{π} of type 1 (e'_{π} of type 2) for rooted π e.g., $\diamond_1 \dots \diamond_n p \leq \diamond_0 p$ axiomatise complex, and so complete theories

'non-standard' equations

$$p \leq \diamond \diamond (p \land \diamond p)$$
 for $\pi = \checkmark e_{\pi} = e'_{\pi} = (p \leq \diamond p)$
 $\diamond \diamond p \land \diamond \diamond \diamond p \leq \diamond p$ for $\bullet \bullet \bullet \bullet$

are incomplete

'standard' equations

 $e_{\pi}= \diamond \diamond \diamond p \leq \diamond p$ type 1

rooted profile π

$$e'_{\pi} = p_1 \wedge \diamond (p_2 \wedge \diamond (p_3 \wedge \diamond p_4)) \leq p_1 \wedge \diamond p_4 \quad ext{ type 2}$$

TheoremEquations e_{π} of type 1 (e'_{π} of type 2) for rooted π e.g., $\diamond_1 \dots \diamond_n p \leq \diamond_0 p$ axiomatise complex, and so complete theories

'non-standard' equations

$$p \leq \diamond \diamond (p \land \diamond p)$$
 for $\pi = \checkmark e_{\pi} = e'_{\pi} = (p \leq \diamond p)$
 $\diamond \diamond p \land \diamond \diamond \diamond p \leq \diamond p$ for $\bullet \bullet \bullet \bullet \bullet$

are incomplete

Normal modal logics axiomatisable by \mathcal{SP} -equations can be

undecidable (Kikot, Shapirovsky, Zolin 2014):

 $\diamond_R \diamond_P \diamond_R p \leq \diamond_P p, \quad \diamond_Q \diamond_R p \leq \diamond_Q p, \quad \diamond_Q \diamond_P p \leq \diamond_P p$

however, the corresponding \mathcal{SP} -theory is **tractable**

\mathcal{SP} -equations with existential correspondents

Theorem: Any \mathcal{EL} -theory \mathcal{E} consisting of equations $e = (\sigma \leq \tau)$ such that – every variable in σ occurs in it only once, – τ corresponds to the tree $\mathcal{T}_{\tau} = (W_{\tau}, R_{\tau}, V_{\tau})$ with – $|W_{\tau}| \geq 2$ and all points in any $V_{\tau}(p)$ are leaves of \mathcal{T}_{τ} , – $V_{\tau}(p) \cap V_{\tau}(q) = \emptyset$ whenever $p \neq q$ is complex, and so complete

Example: density axiom $e_{\textit{dense}} = \diamond p \leq \diamond \diamond p$ with

$$\Psi_{e_{\mathit{dense}}} = orall x, y \left[R(x,y)
ightarrow \exists z \left(R(x,z) \land R(z,y)
ight)
ight]$$

generalised density

\mathcal{SP} -equations with disjunctive correspondents

$$egin{aligned} e_{ extsf{fun}}^2 &= ig(\diamondsuit(p \wedge q) \land \diamondsuit(p \wedge r) \land \diamondsuit(q \wedge r) \leq \diamondsuit(p \wedge q \wedge r) ig) \ & orall r, x, y, z ig(R(r,x) \land R(r,y) \land R(r,z)
ightarrow (x=y) \lor (x=z) \lor (y=z) ig) \end{aligned}$$

\mathcal{SP} -equations with disjunctive correspondents

$$egin{aligned} e_{ extsf{fun}}^2 &= ig(\diamondsuit(p \wedge q) \land \diamondsuit(p \wedge r) \land \diamondsuit(q \wedge r) \le \diamondsuit(p \wedge q \wedge r) ig) \ & orall r, x, y, z ig(R(r, x) \land R(r, y) \land R(r, z)
ightarrow (x = y) \lor (x = z) \lor (y = z) ig) \end{aligned}$$

not complex $\{e_{wcon}\}, \{e_{refl}, e_{wcon}\}, \mathcal{E}_{S4.3}$

Completeness by syntactic proxies

Completeness by syntactic proxies

$$\mathcal{E}$$
 is complete if, for any $e = (\sigma \le \tau)$, $\mathcal{E} \models_{\mathsf{Kr}} e \implies \mathcal{E} \models_{\mathsf{SLO}} e$

(1) \mathcal{E} -normal form $\mathcal{E} \vdash_{\mathsf{SLO}} (\tau = \bigwedge_{\varrho \in N_\tau} \varrho)$

reflecting Kripke frames for $\boldsymbol{\mathcal{E}}$

 $(\sigma \leq igwedge_{arrho \in N_{ au}} arrho)$ is the syntactic proxy of e

(2) for any
$$\varrho \in N_{\tau}$$
, $\mathcal{E} \models_{\mathsf{Kr}} \sigma \leq \varrho \implies \mathcal{E}^{-} \models_{\mathsf{Kr}} \sigma \leq \varrho$

for some complete $\mathcal{E}^- \subseteq \mathcal{E}$

Completeness by syntactic proxies

$$\mathcal{E}$$
 is complete if, for any $e = (\sigma \le \tau)$, $\mathcal{E} \models_{\mathsf{Kr}} e \implies \mathcal{E} \models_{\mathsf{SLO}} e$

(1)
$$\mathcal{E}$$
-normal form $\mathcal{E} \vdash_{\mathsf{SLO}} (\tau = \bigwedge_{\varrho \in N_\tau} \varrho)$

reflecting Kripke frames for $\boldsymbol{\mathcal{E}}$

 $(\sigma \leq igwedge_{arrho \in N_{ au}} arrho)$ is the syntactic proxy of e

(2) for any
$$\varrho \in N_{\tau}$$
, $\mathcal{E} \models_{\mathsf{Kr}} \sigma \leq \varrho \implies \mathcal{E}^- \models_{\mathsf{Kr}} \sigma \leq \varrho$
for some complete $\mathcal{E}^- \subset \mathcal{E}$

Complete but not complex

$$- \mathcal{E}_{Alt_n}$$
 $N_{\tau} = \{ \leq n \text{-functional full subtree of } \mathfrak{T}_{\tau} \}$ $\mathcal{E}^- = \emptyset$ $- \mathcal{E}_{S4.3}$
tractable $N_{\tau} = \{ \text{full branches of } \mathfrak{T}_{\tau} \}$ $\mathcal{E}^- = \mathcal{E}_{S4}$

Extensions of $\mathcal{E}_{\rm S5}$

(M. Jackson 2004)

- complex (and so complete)
- complete but not complex
- incomplete