Lambek Calculus Extended with Subexponential and Bracket Modalities

Max Kanovich, Stepan Kuznetsov, Andre Scedrov

Basic Categorial Grammar

John loves Mary

Basic Categorial Grammar

$$
\begin{array}{ccc}
\text { John } & \text { loves } & \text { Mary } \\
n p & (n p \backslash s) / n p & n p
\end{array}
$$

Basic Categorial Grammar

$$
\begin{array}{ccc}
\text { John } & \text { loves } & \text { Mary } \\
n p & (n p \backslash s) / n p & n p
\end{array} \rightarrow s
$$

Basic Categorial Grammar

$$
\begin{array}{ccc}
\text { John } & \text { loves } & \text { Mary } \\
n p & (n p \backslash s) / n p & n p
\end{array} \rightarrow s
$$

Basic Categorial Grammar

	John	loves
\vdash	Mary	
$n p$	$(n p \backslash s) / n p$	$n p$

Non-commutativity: $\vdash n p, n p \backslash s \rightarrow n p$ ("John runs"), but $\nvdash n p \backslash s, n p \rightarrow s$) ("runs John").

Basic Categorial Grammar

	John	loves
\vdash	Mary	
$n p$	$(n p \backslash s) / n p$	$n p$

Non-commutativity: $\vdash n p, n p \backslash s \rightarrow n p$ ("John runs"), but $\nvdash n p \backslash s, n p \rightarrow s$) ("runs John").

Reduction rules of BCG: $A, A \backslash B \rightarrow B$;
$B / A, A \rightarrow B$

Basic Categorial Grammar

	John	loves
\vdash	Mary	
$n p$	$(n p \backslash s) / n p$	$n p$

Non-commutativity: $\vdash n p, n p \backslash s \rightarrow n p$ ("John runs"), but $\nvdash n p \backslash s, n p \rightarrow s$) ("runs John").

Reduction rules of BCG: $A, A \backslash B \rightarrow B$;
$B / A, A \rightarrow B$
[Ajdukiewicz 1935, Bar-Hillel et al. 1960]

Extending Categorial Grammar

John loves Mary

Extending Categorial Grammar

$$
\begin{array}{ccc}
\text { John } & \text { loves } & \text { Mary } \\
n p & (n p \backslash s) / n p & n p
\end{array}
$$

Extending Categorial Grammar

$$
\begin{array}{ccc}
\text { John } & \text { loves } & \text { Mary } \\
n p & (n p \backslash s) / n p & n p
\end{array} \rightarrow s
$$

Extending Categorial Grammar

\qquad	John	
$n p$	loves	Mary
$(n p \backslash s) / n p$	$n p$	

Extending Categorial Grammar

$$
\begin{array}{cc}
\text { John } & \text { loves Mary } \\
n p & (n p \backslash s) / n p \quad n p \quad \rightarrow s \\
\text { the girl whom John loves }
\end{array}
$$

Extending Categorial Grammar

Extending Categorial Grammar

$$
\begin{array}{cccc}
\begin{array}{ccc}
\text { John } & \text { loves } & \text { Mary } \\
n p & (n p \backslash s) / n p & n p
\end{array} \rightarrow s \\
\text { the } & \text { girl } & \text { whom } & \\
n p / n & n & (n \backslash n) /(s / n p)
\end{array} \begin{array}{ll}
\begin{array}{cc}
\text { John } & \begin{array}{c}
\text { loves } \\
n p
\end{array} \\
n p / n p \backslash s) / n p
\end{array}
\end{array}
$$

Extending Categorial Grammar

Extending Categorial Grammar

Deriving principles like $n p,(n p \backslash s) / n p \rightarrow s / n p$ requires extra rules (in this particular case, associativity: $(A \backslash B) / C \leftrightarrow A \backslash(B / C)$).

Extending Categorial Grammar

Deriving principles like $n p,(n p \backslash s) / n p \rightarrow s / n p$ requires extra rules (in this particular case, associativity: $(A \backslash B) / C \leftrightarrow A \backslash(B / C)$).
the boy who loves Mary

Extending Categorial Grammar

Deriving principles like $n p,(n p \backslash s) / n p \rightarrow s / n p$ requires extra rules (in this particular case, associativity: $(A \backslash B) / C \leftrightarrow A \backslash(B / C)$).

the	boy	who	loves	Mary
$n p / n$	n	$(n \backslash n) /(n p \backslash s)$	$(n p \backslash s) / n p$	$n p$

Extending Categorial Grammar

Deriving principles like $n p,(n p \backslash s) / n p \rightarrow s / n p$ requires extra rules (in this particular case, associativity: $(A \backslash B) / C \leftrightarrow A \backslash(B / C)$).

Extending Categorial Grammar

Deriving principles like $n p,(n p \backslash s) / n p \rightarrow s / n p$ requires extra rules (in this particular case, associativity: $(A \backslash B) / C \leftrightarrow A \backslash(B / C)$).

Extending Categorial Grammar

Deriving principles like $n p,(n p \backslash s) / n p \rightarrow s / n p$ requires extra rules (in this particular case, associativity: $(A \backslash B) / C \leftrightarrow A \backslash(B / C)$).

Extending Categorial Grammar (cont.)

Another example (from Italian, see [Moot and Retoré 2012]): "She/He watches the train passing"

Guarda	passare	il	treno
She/He watches	pass	the	train

Extending Categorial Grammar (cont.)

Another example (from Italian, see [Moot and Retoré 2012]): "She/He watches the train passing"

Guarda	passare	il	treno	
She/He watches	pass	the	train	
$s / i n f$	$i n f / n p$	$n p / n$	n	$\rightarrow s$

Extending Categorial Grammar (cont.)

Another example (from Italian, see [Moot and Retoré 2012]): "She/He watches the train passing"

Guarda	passare	il	treno	
She/He watches	pass	the	train	
$s /$ inf	inf $/ n p$	$n p / n$	n	$\rightarrow s$

Transform into a question: "What does she/he watch passing?"
Cosa guarda passare ?

$$
\rightarrow S
$$

Here we need transitivity: $A / B, B / C \rightarrow A / C$.

Extending Categorial Grammar (cont.)

Another example (from Italian, see [Moot and Retoré 2012]): "She/He watches the train passing"

Guarda	passare	il	treno	
She/He watches	pass	the	train	
$s /$ inf	inf $/ n p$	$n p / n$	n	$\rightarrow s$

Transform into a question: "What does she/he watch passing?"

$$
\begin{array}{ccc}
\text { Cosa } & \text { guarda } & \text { passare ? } \\
\vdash & q /(s / n p) & s / i n f
\end{array} \begin{aligned}
& \text { inf } / n p \quad \rightarrow s
\end{aligned}
$$

Here we need transitivity: $A / B, B / C \rightarrow A / C$.

Extending Categorial Grammar (cont.)

Another example (from Italian, see [Moot and Retoré 2012]): "She/He watches the train passing"

Guarda	passare	il	treno	
She/He watches	pass	the	train	
$s /$ inf	inf $/ n p$	$n p / n$	n	$\rightarrow s$

Transform into a question: "What does she/he watch passing?"

Here we need transitivity: $A / B, B / C \rightarrow A / C$.

Extending Categorial Grammar: Two Approaches

1. Add necessary principles as extra axioms to BCG \sim Combinatory Categorial Grammar (CCG) [Steedman 1996]

Extending Categorial Grammar: Two Approaches

1. Add necessary principles as extra axioms to BCG \sim Combinatory Categorial Grammar (CCG) [Steedman 1996]
2. One calculus to derive them all! ~ Lambek Grammar [Lambek 1958]

The Lambek Calculus (L*)

$$
\begin{array}{cc}
\overline{A \rightarrow A} \\
\frac{\Pi \rightarrow A \quad \Delta_{1}, B, \Delta_{2} \rightarrow C}{\Delta_{1}, B / A, \Pi, \Delta_{2} \rightarrow C}(/ \rightarrow) & \frac{\Pi, A \rightarrow B}{\Pi \rightarrow B / A}(\rightarrow /) \\
\frac{\Pi \rightarrow A \quad \Delta_{1}, B, \Delta_{2} \rightarrow C}{\Delta_{1}, \Pi, A \backslash B, \Delta_{2} \rightarrow C}(\backslash \rightarrow) & \frac{A, \Pi \rightarrow B}{\Pi \rightarrow A \backslash B}(\rightarrow \backslash)
\end{array}
$$

[Lambek 1958, 1961, ...]

The Lambek Calculus (L*)

$$
\overline{A \rightarrow A}
$$

$$
\begin{array}{ll}
\frac{\Pi \rightarrow A \quad \Delta_{1}, B, \Delta_{2} \rightarrow C}{\Delta_{1}, B / A, \Pi, \Delta_{2} \rightarrow C}(/ \rightarrow) & \frac{\Pi, A \rightarrow B}{\Pi \rightarrow B / A}(\rightarrow /) \\
\frac{\Pi \rightarrow A \quad \Delta_{1}, B, \Delta_{2} \rightarrow C}{\Delta_{1}, \Pi, A \backslash B, \Delta_{2} \rightarrow C}(\backslash \rightarrow) & \frac{A, \Pi \rightarrow B}{\Pi \rightarrow A \backslash B}(\rightarrow \backslash)
\end{array}
$$

[Lambek 1958, 1961, ...]
$\mathbf{L}^{*} \vdash(A \backslash B) / C \leftrightarrow A \backslash(B / C)$
$\mathbf{L}^{*} \vdash A / B, B / C \rightarrow A / C$
...

Properties of the Lambek Calculus

- Lambek grammars generate precisely context-free languages
[Pentus 1993].
his means that formally their expressive power is not greater than the power of BCGs.

Properties of the Lambek Calculus

- Lambek grammars generate precisely context-free languages
[Pentus 1993].
This means that formally their expressive power is not greater than the power of BCGs.

Properties of the Lambek Calculus

- Lambek grammars generate precisely context-free languages [Pentus 1993].
This means that formally their expressive power is not greater than the power of BCGs.
- The Lambek calculus is NP-complete [Pentus 2006, Savateev 2008].
(Steedman's CCGs enjoy polynomial-time parsing.)

Properties of the Lambek Calculus

- Lambek grammars generate precisely context-free languages [Pentus 1993].
This means that formally their expressive power is not greater than the power of BCGs.
- The Lambek calculus is NP-complete [Pentus 2006, Savateev 2008]. (Steedman's CCGs enjoy polynomial-time parsing.)
- Polynomial-time algorithm for fragments of bounded depth [Pentus 2010].
(Running time $O\left(2^{d} n^{4}\right)$, where n is the length of the sequent and d is the implication nesting depth.)

Unwanted Derivations

book
which
John laughed without reading

Unwanted Derivations

Unwanted Derivations

$\stackrel{\text { * book }}{+} \quad$| which |
| :---: |
| $(C N \backslash C N) /(S / N)$ |$\underbrace{\text { John laughed without reading }}_{S / N} \rightarrow C N$

Unwanted Derivations

(cf. "John likes Mary and Pete likes Kate" $\rightarrow S$; "and" is of type $S \backslash S / S$)

The Lambek Calculus with Brackets

[Morrill 1992, Moortgat 1995]

$$
\begin{array}{ccc}
& \overline{A \rightarrow A} \\
\frac{\Pi \rightarrow A}{} \frac{\Delta(B) \rightarrow C}{\Delta(\Pi, A \backslash B) \rightarrow C} & \frac{A, \Pi \rightarrow B}{\Pi \rightarrow A \backslash B} & \frac{\Gamma(A, B) \rightarrow C}{\Gamma(A \cdot B) \rightarrow C} \\
\frac{\Pi \rightarrow A \quad \Delta(B) \rightarrow C}{\Delta(B / A, \Pi) \rightarrow C} & \frac{\Pi, A \rightarrow B}{\Pi \rightarrow B / A} & \frac{\Gamma \rightarrow A \Delta \rightarrow B}{\Gamma, \Delta \rightarrow A \cdot B} \\
\frac{\Delta([A]) \rightarrow C}{\Delta(\rangle A) \rightarrow C} & \frac{\Pi \rightarrow A}{[\Pi] \rightarrow\rangle A} & \frac{\Delta(A) \rightarrow C}{\Delta\left(\left[[]^{-1} A\right]\right) \rightarrow C}
\end{array} \frac{[\Pi] \rightarrow A}{\Pi \rightarrow[]^{-1} A} .
$$

The Lambek Calculus with Brackets

[Morrill 1992, Moortgat 1995]

$$
\begin{array}{ccc}
& \overline{A \rightarrow A} \\
\frac{\Pi \rightarrow A}{} \quad \Delta(B) \rightarrow C & \frac{A, \Pi \rightarrow B}{\square(\Pi, A \backslash B) \rightarrow C} & \frac{\Gamma(A, B) \rightarrow C}{\Gamma(A \cdot B) \rightarrow C} \\
\frac{\Pi \rightarrow A \quad \Delta(B) \rightarrow C}{\Delta(B / A, \Pi) \rightarrow C} & \frac{\Pi, A \rightarrow B}{\Pi \rightarrow B / A} & \frac{\Gamma \rightarrow A \Delta \rightarrow B}{\Gamma, \Delta \rightarrow A \cdot B} \\
\frac{\Delta([A]) \rightarrow C}{\Delta(\rangle A) \rightarrow C} & \frac{\Pi \rightarrow A}{[\Pi] \rightarrow\rangle A} & \frac{\Delta(A) \rightarrow C}{\Delta\left(\left[[]^{-1} A\right]\right) \rightarrow C}
\end{array} \frac{[\Pi] \rightarrow A}{\Pi \rightarrow[]^{-1} A} .
$$

- Brackets introduce controlled non-associativity.

The Lambek Calculus with Brackets

[Morrill 1992, Moortgat 1995]

$$
\begin{array}{ccc}
& \overline{A \rightarrow A} \\
\frac{\Pi \rightarrow A \quad \Delta(B) \rightarrow C}{\Delta(\Pi, A \backslash B) \rightarrow C} & \frac{A, \Pi \rightarrow B}{\Pi \rightarrow A \backslash B} & \frac{\Gamma(A, B) \rightarrow C}{\Gamma(A \cdot B) \rightarrow C} \\
\frac{\Pi \rightarrow A \quad \Delta(B) \rightarrow C}{\Delta(B / A, \Pi) \rightarrow C} & \frac{\Pi, A \rightarrow B}{\Pi \rightarrow B / A} & \frac{\Gamma \rightarrow A \Delta \rightarrow B}{\Gamma, \Delta \rightarrow A \cdot B} \\
\frac{\Delta([A]) \rightarrow C}{\Delta(\rangle A) \rightarrow C} & \frac{\Pi \rightarrow A}{[\Pi] \rightarrow\rangle A} & \frac{\Delta(A) \rightarrow C}{\Delta\left(\left[[]^{-1} A\right]\right) \rightarrow C}
\end{array} \frac{[\Pi] \rightarrow A}{\Pi \rightarrow[]^{-1} A} .
$$

- Brackets introduce controlled non-associativity.
- Cut elimination proved by Moortgat [1996].

Islands: Blocking Unwanted Derivations Using Brackets

Islands: Blocking Unwanted Derivations Using Brackets

- book which John laughed without reading

Islands: Blocking Unwanted Derivations Using Brackets

- book which John laughed [without reading]

Islands: Blocking Unwanted Derivations Using Brackets

- book which John laughed [without reading]
$C N,(C N \backslash C N) /(S / C N), N, N \backslash S,\left[[]^{-1}((N \backslash S) \backslash(N \backslash S)) /(N \backslash S),(N \backslash S) / N\right] \rightarrow C N$

Islands: Blocking Unwanted Derivations Using Brackets

- book which John laughed [without reading]
$C N,(C N \backslash C N) /(S / C N), N, N \backslash S,\left[[]^{-1}((N \backslash S) \backslash(N \backslash S)) /(N \backslash S),(N \backslash S) / N\right] \rightarrow C N$
This sequent is not derivable.

Islands: Blocking Unwanted Derivations Using Brackets

- book which John laughed [without reading]
$C N,(C N \backslash C N) /(S / C N), N, N \backslash S,\left[[]^{-1}((N \backslash S) \backslash(N \backslash S)) /(N \backslash S),(N \backslash S) / N\right] \rightarrow C N$
This sequent is not derivable.
- girl who John likes Mary and Pete likes

Islands: Blocking Unwanted Derivations Using Brackets

- book which John laughed [without reading]
$C N,(C N \backslash C N) /(S / C N), N, N \backslash S,\left[[]^{-1}((N \backslash S) \backslash(N \backslash S)) /(N \backslash S),(N \backslash S) / N\right] \rightarrow C N$
This sequent is not derivable.
- girl who [John likes Mary and Pete likes]

Islands: Blocking Unwanted Derivations Using Brackets

- book which John laughed [without reading]

$$
C N,(C N \backslash C N) /(S / C N), N, N \backslash S,\left[[]^{-1}((N \backslash S) \backslash(N \backslash S)) /(N \backslash S),(N \backslash S) / N\right] \rightarrow C N
$$

This sequent is not derivable.

- girl who [John likes Mary and Pete likes]
$C N,(C N \backslash C N) /(S / C N),\left[N,(N \backslash S) / N, N,\left(S \backslash[]^{-1} S\right) / S, N,(N \backslash S) / N\right] \rightarrow C N$

Islands: Blocking Unwanted Derivations Using Brackets

- book which John laughed [without reading]
$C N,(C N \backslash C N) /(S / C N), N, N \backslash S,\left[[]^{-1}((N \backslash S) \backslash(N \backslash S)) /(N \backslash S),(N \backslash S) / N\right] \rightarrow C N$
This sequent is not derivable.
- girl who [John likes Mary and Pete likes]
$C N,(C N \backslash C N) /(S / C N),\left[N,(N \backslash S) / N, N,\left(S \backslash[]^{-1} S\right) / S, N,(N \backslash S) / N\right] \rightarrow C N$ Neither is this one.

Subexponential: Medial Extraction

 the girl whom John met yesterday
Subexponential: Medial Extraction

 the girl \quad whom $_{i} \quad$ John met e_{i} yesterday
Subexponential: Medial Extraction

the girl \quad whom $_{i} \quad$ John met e_{i} yesterday

Subexponential: Medial Extraction

the girl
whom $_{i}$
John met e_{i} yesterday

$$
\frac{\Delta(!A, \Gamma) \rightarrow C}{\Delta(\Gamma,!A) \rightarrow C}\left(\operatorname{perm}_{1}\right) \quad \frac{\Delta(A) \rightarrow C}{\Delta(!A) \rightarrow C}(!\rightarrow)
$$

Subexponential: Medial Extraction

the girl
whom $_{i}$
John met e_{i} yesterday
$\rightarrow S /!N$

$$
\frac{\Delta(!A, \Gamma) \rightarrow C}{\Delta(\Gamma,!A) \rightarrow C}\left(\operatorname{perm}_{1}\right) \quad \frac{\Delta(A) \rightarrow C}{\Delta(!A) \rightarrow C}(!\rightarrow)
$$

$$
\frac{\frac{N,(N \backslash S) / N, N,(N \backslash S) \backslash(N \backslash S) \rightarrow S}{N,(N \backslash S) / N,!N,(N \backslash S) \backslash(N \backslash S) \rightarrow S}(!\rightarrow)}{\frac{N,(N \backslash S) / N,(N \backslash S) \backslash(N \backslash S),!N \rightarrow S}{N,(N \backslash S) / N,(N \backslash S) \backslash(N \backslash S) \rightarrow S /!N}\left(\operatorname{perm}_{1}\right)}(\rightarrow /)
$$

Subexponential: Medial Extraction

the girl

$$
(C N \backslash C N) /(S /!N) \underbrace{\text { whom }}_{\rightarrow S /!N}{ }_{i}
$$

$$
\frac{\Delta(!A, \Gamma) \rightarrow C}{\Delta(\Gamma,!A) \rightarrow C}\left(\operatorname{perm}_{1}\right) \quad \frac{\Delta(A) \rightarrow C}{\Delta(!A) \rightarrow C}(!\rightarrow)
$$

$$
\frac{\frac{N,(N \backslash S) / N, N,(N \backslash S) \backslash(N \backslash S) \rightarrow S}{N,(N \backslash S) / N,!N,(N \backslash S) \backslash(N \backslash S) \rightarrow S}(!\rightarrow)}{\frac{N,(N \backslash S) / N,(N \backslash S) \backslash(N \backslash S),!N \rightarrow S}{N,(N \backslash S) / N,(N \backslash S) \backslash(N \backslash S) \rightarrow S /!N}\left(\operatorname{perm}_{1}\right)}(\rightarrow /)
$$

Subexponential: Medial Extraction

the girl

$$
\frac{\Delta(!A, \Gamma) \rightarrow C}{\Delta(\Gamma,!A) \rightarrow C}\left(\operatorname{perm}_{1}\right) \quad \frac{\Delta(A) \rightarrow C}{\Delta(!A) \rightarrow C}(!\rightarrow)
$$

$$
\frac{\frac{N,(N \backslash S) / N, N,(N \backslash S) \backslash(N \backslash S) \rightarrow S}{N,(N \backslash S) / N,!N,(N \backslash S) \backslash(N \backslash S) \rightarrow S}(!\rightarrow)}{\frac{N,(N \backslash S) / N,(N \backslash S) \backslash(N \backslash S),!N \rightarrow S}{N,(N \backslash S) / N,(N \backslash S) \backslash(N \backslash S) \rightarrow S /!N}\left(\operatorname{perm}_{1}\right)}(\rightarrow /)
$$

Subexponential: Parasitic Extraction

the paper that John signed without reading

Subexponential: Parasitic Extraction

the paper that ${ }_{i}$ John signed e_{i} without reading e_{i}

Subexponential: Parasitic Extraction

the paper that ${ }_{i} \underbrace{\text { John signed } e_{i} \text { without reading } e_{i}}_{\rightarrow S /!N}$

Subexponential: Parasitic Extraction

the paper that ${ }_{i}$ John signed e_{i} without reading e_{i}

$$
\rightarrow S /!N
$$

$$
\frac{\Delta(!A, \Gamma) \rightarrow C}{\Delta(\Gamma,!A) \rightarrow C}\left(\operatorname{perm}_{1}\right) \quad \frac{\Delta(A) \rightarrow C}{\Delta(!A) \rightarrow C}(!\rightarrow)
$$

$$
\frac{\Delta(!A,!A) \rightarrow C}{\Delta(!A) \rightarrow C}(\text { contr })
$$

Subexponential: Parasitic Extraction

the paper that ${ }_{i}$ John signed e_{i} [without reading e_{i}]

$$
\rightarrow S /!N
$$

$$
\frac{\Delta(!A, \Gamma) \rightarrow C}{\Delta(\Gamma,!A) \rightarrow C}\left(\operatorname{perm}_{1}\right) \quad \frac{\Delta(A) \rightarrow C}{\Delta(!A) \rightarrow C}(!\rightarrow)
$$

$$
\frac{\Delta(!A,!A) \rightarrow C}{\Delta(!A) \rightarrow C}(\text { contr })
$$

Subexponential: Parasitic Extraction

the paper that ${ }_{i}$ John signed e_{i} [without reading e_{i}]

$$
\rightarrow S /!N
$$

$$
\frac{\Delta(!A, \Gamma) \rightarrow C}{\Delta(\Gamma,!A) \rightarrow C}\left(\operatorname{perm}_{1}\right) \quad \frac{\Delta(A) \rightarrow C}{\Delta(!A) \rightarrow C}(!\rightarrow)
$$

$$
\frac{\Delta\left(!A_{1}, \ldots,!A_{n},\left[!A_{1}, \ldots,!A_{n}, \Gamma\right]\right) \rightarrow B}{\Delta\left(!A_{1}, \ldots,!A_{n}, \Gamma\right) \rightarrow B}\left(\operatorname{contr}_{\mathbf{b}}\right)
$$

Subexponential: Parasitic Extraction

the paper that ${ }_{i}$ John signed e_{i} [without reading e_{i}]

$$
\rightarrow S /!N
$$

$$
\frac{\Delta(!A, \Gamma) \rightarrow C}{\Delta(\Gamma,!A) \rightarrow C}\left(\operatorname{perm}_{1}\right) \quad \frac{\Delta(A) \rightarrow C}{\Delta(!A) \rightarrow C}(!\rightarrow)
$$

$$
\frac{\Delta\left(!A_{1}, \ldots,!A_{n},\left[!A_{1}, \ldots,!A_{n}, \Gamma\right]\right) \rightarrow B}{\Delta\left(!A_{1}, \ldots,!A_{n}, \Gamma\right) \rightarrow B}\left(\operatorname{contr}_{\mathbf{b}}\right)
$$

causes

 undecidabilityThe Lambek Calculus with Subexponential and Bracket Modalities $\left(!_{b} \mathrm{~L}^{1}\right) \quad \overline{A \rightarrow A} \quad \overline{\Lambda \rightarrow \mathbf{1}}$

$$
\begin{array}{ccc}
\frac{\Gamma \rightarrow B \quad \Delta(C) \rightarrow D}{\Delta(C / B, \Gamma) \rightarrow D}(/ \rightarrow) & \frac{\Gamma, B \rightarrow C}{\Gamma \rightarrow C / B}(\rightarrow /) & \frac{\Delta(A, B) \rightarrow D}{\Delta(A \cdot B) \rightarrow D}(\cdot \rightarrow) \\
\frac{\Gamma \rightarrow A \quad \Delta(C) \rightarrow D}{\Delta(\Gamma, A \backslash C) \rightarrow D}(\backslash \rightarrow) & \frac{A, \Gamma \rightarrow C}{\Gamma \rightarrow A \backslash C}(\rightarrow \backslash) & \frac{\Gamma_{1} \rightarrow A \Gamma_{2} \rightarrow B}{\Gamma_{1}, \Gamma_{2} \rightarrow A \cdot B}(\rightarrow \cdot) \\
\frac{\Delta(\Lambda) \rightarrow A}{\Delta(1) \rightarrow A}(\mathbf{1} \rightarrow) & \frac{\Delta([A]) \rightarrow C}{\Delta(\rangle A) \rightarrow C}(\rangle \rightarrow) & \frac{\Pi \rightarrow A}{\Gamma \Pi] \rightarrow\rangle A}(\rightarrow\rangle) \\
\frac{\Gamma(A) \rightarrow B}{\Gamma(!A) \rightarrow B}(!\rightarrow) & \frac{\Delta(A) \rightarrow C}{\Delta\left(\left[[]^{-1} A\right]\right) \rightarrow C}\left([]^{-1} \rightarrow\right) & \frac{[\Pi] \rightarrow A}{\Pi \rightarrow[]^{-1} A}\left(\rightarrow[]^{-1}\right) \\
\frac{!A_{1}, \ldots,!A_{n} \rightarrow A}{!A_{1}, \ldots,!A_{n} \rightarrow!A}(\rightarrow!) & \frac{\Delta\left(!A_{1}, \ldots,!A_{n},\left[!A_{1}, \ldots,!A_{n}, \Gamma\right]\right) \rightarrow B}{\Delta\left(!A_{1}, \ldots,!A_{n}, \Gamma\right) \rightarrow B}\left(\operatorname{contr}_{\mathbf{b}}\right) \\
\frac{\Delta(!A, \Gamma) \rightarrow B}{\Delta(\Gamma,!A) \rightarrow B}\left(\operatorname{perm}_{1}\right) & \frac{\Delta(\Gamma,!A) \rightarrow B}{\Delta(!A, \Gamma) \rightarrow B}\left(\operatorname{perm}_{2}\right) & \frac{\Pi \rightarrow A \Delta(A) \rightarrow C}{\Delta(\Pi) \rightarrow C}(c u t)
\end{array}
$$

The Lambek Calculus with Subexponential and Bracket Modalities $\left(!_{b} \mathrm{~L}^{1}\right) \quad \overline{A \rightarrow A} \quad \overline{\Lambda \rightarrow \mathbf{1}}$

$$
\begin{array}{ccc}
\frac{\Gamma \rightarrow B}{} \quad \Delta(C) \rightarrow D \\
\Delta(C / B, \Gamma) \rightarrow D
\end{array}(/ \rightarrow) \quad \frac{\Gamma, B \rightarrow C}{\Gamma \rightarrow C / B}(\rightarrow /) \quad \frac{\Delta(A, B) \rightarrow D}{\Delta(A \cdot B) \rightarrow D}(\cdot \rightarrow)
$$

- A fragment of Db! ${ }_{\mathrm{b}}$ by Morrill and Valentín, 2015.

The Lambek Calculus with Subexponential and Bracket Modalities $\left(!_{b} \mathrm{~L}^{1}\right) \quad \overline{A \rightarrow A} \quad \overline{\Lambda \rightarrow \mathbf{1}}$

$$
\begin{array}{ccc}
\frac{\Gamma \rightarrow B \quad \Delta(C) \rightarrow D}{\Delta(C / B, \Gamma) \rightarrow D}(/ \rightarrow) & \frac{\Gamma, B \rightarrow C}{\Gamma \rightarrow C / B}(\rightarrow /) & \frac{\Delta(A, B) \rightarrow D}{\Delta(A \cdot B) \rightarrow D}(\cdot \rightarrow) \\
\frac{\Gamma \rightarrow A \quad \Delta(C) \rightarrow D}{\Delta(\Gamma, A \backslash C) \rightarrow D}(\backslash \rightarrow) & \frac{A, \Gamma \rightarrow C}{\Gamma \rightarrow A \backslash C}(\rightarrow \backslash) & \frac{\Gamma_{1} \rightarrow A \Gamma_{2} \rightarrow B}{\Gamma_{1}, \Gamma_{2} \rightarrow A \cdot B}(\rightarrow \cdot) \\
\frac{\Delta(\Lambda) \rightarrow A}{\Delta(\mathbf{1}) \rightarrow A}(\mathbf{1} \rightarrow) & \frac{\Delta([A]) \rightarrow C}{\Delta(\rangle A) \rightarrow C}(\rangle \rightarrow) & \frac{\Pi \rightarrow A}{\Gamma \Pi] \rightarrow\rangle A}(\rightarrow\rangle) \\
\frac{\Gamma(A) \rightarrow B}{\Gamma(!A) \rightarrow B}(!\rightarrow) & \frac{\Delta(A) \rightarrow C}{\Delta\left(\left[[]^{-1} A\right]\right) \rightarrow C}\left([]^{-1} \rightarrow\right) & \frac{[\Pi] \rightarrow A}{\Pi \rightarrow[]^{-1} A}\left(\rightarrow[]^{-1}\right) \\
\frac{!A_{1}, \ldots,!A_{n} \rightarrow A}{!A_{1}, \ldots,!A_{n} \rightarrow!A}(\rightarrow!) & \frac{\Delta\left(!A_{1}, \ldots,!A_{n},\left[!A_{1}, \ldots,!A_{n}, \Gamma\right]\right) \rightarrow B}{\Delta\left(!A_{1}, \ldots,!A_{n}, \Gamma\right) \rightarrow B}\left(\operatorname{contr}_{\mathbf{b}}\right) \\
\frac{\Delta(!A, \Gamma) \rightarrow B}{\Delta(\Gamma,!A) \rightarrow B}\left(\operatorname{perm}_{1}\right) & \frac{\Delta(\Gamma,!A) \rightarrow B}{\Delta(!A, \Gamma) \rightarrow B}\left(\operatorname{perm}_{2}\right) & \frac{\Pi \rightarrow A \Delta(A) \rightarrow C}{\Delta(\Pi) \rightarrow C}(c u t)
\end{array}
$$

- A fragment of Db! ${ }_{\mathbf{b}}$ by Morrill and Valentín, 2015.
- Our analysis of syntactic phenomena is due to Morrill, 2011-2017.

Cut Elimination in $!_{\mathrm{b}} \mathrm{L}^{1}$

We use deep cut elimination strategy (cf. Braüner and de Paiva 1996).

Cut Elimination in $!_{\mathrm{b}} \mathrm{L}^{1}$

We use deep cut elimination strategy (cf. Braüner and de Paiva 1996).

Algorithmic Results

Algorithmic Results

- The derivability problem in $!_{b} L^{1}$ is undecidable.

Algorithmic Results

- The derivability problem in $!_{b} L^{1}$ is undecidable.

This solves an open question raised by Morrill and Valentín, 2015.

Algorithmic Results

- The derivability problem in $!_{b} L^{1}$ is undecidable. This solves an open question raised by Morrill and Valentín, 2015.
- The derivability problem for sequents obeying bracket non-negative condition belongs to NP.

Algorithmic Results

- The derivability problem in $!_{b} L^{1}$ is undecidable. This solves an open question raised by Morrill and Valentín, 2015.
- The derivability problem for sequents obeying bracket non-negative condition belongs to NP.
BNC: any negative occurrence of a ! A includes neither a positive occurrence of []$^{-1} C$, nor a negative occurrence of a $\rangle C$.

Algorithmic Results

- The derivability problem in $!_{b} L^{1}$ is undecidable. This solves an open question raised by Morrill and Valentín, 2015.
- The derivability problem for sequents obeying bracket non-negative condition belongs to NP.
BNC: any negative occurrence of a ! A includes neither a positive occurrence of []$^{-1} C$, nor a negative occurrence of a $\rangle C$. Morrill, Valentín 2015: an exp-time algorithm, used in the CatLog parser.

Algorithmic Results

- The derivability problem in $!_{b} L^{1}$ is undecidable. This solves an open question raised by Morrill and Valentín, 2015.
- The derivability problem for sequents obeying bracket non-negative condition belongs to NP.
BNC: any negative occurrence of a ! A includes neither a positive occurrence of []$^{-1} C$, nor a negative occurrence of a $\rangle C$. Morrill, Valentín 2015: an exp-time algorithm, used in the CatLog parser. NP-complete, as the original Lambek calculus [Pentus 2006].

Algorithmic Results

- The derivability problem in $!_{b} L^{1}$ is undecidable. This solves an open question raised by Morrill and Valentín, 2015.
- The derivability problem for sequents obeying bracket non-negative condition belongs to NP.
BNC: any negative occurrence of a ! A includes neither a positive occurrence of []$^{-1} C$, nor a negative occurrence of a $\rangle C$. Morrill, Valentín 2015: an exp-time algorithm, used in the CatLog parser. NP-complete, as the original Lambek calculus [Pentus 2006].
- Part of a bigger project:

Algorithmic Results

- The derivability problem in $!_{b} L^{1}$ is undecidable. This solves an open question raised by Morrill and Valentín, 2015.
- The derivability problem for sequents obeying bracket non-negative condition belongs to NP.
BNC: any negative occurrence of a ! A includes neither a positive occurrence of []$^{-1} C$, nor a negative occurrence of a $\rangle C$. Morrill, Valentín 2015: an exp-time algorithm, used in the CatLog parser. NP-complete, as the original Lambek calculus [Pentus 2006].
- Part of a bigger project:
- Kan., Kuz., Sce. FG-2016: undecidability for ! ${ }^{1}$ (with !, without brackets).

Algorithmic Results

- The derivability problem in $!_{b} L^{1}$ is undecidable.

This solves an open question raised by Morrill and Valentín, 2015.

- The derivability problem for sequents obeying bracket non-negative condition belongs to NP.
BNC: any negative occurrence of a ! A includes neither a positive occurrence of []$^{-1} C$, nor a negative occurrence of a $\rangle C$. Morrill, Valentín 2015: an exp-time algorithm, used in the CatLog parser. NP-complete, as the original Lambek calculus [Pentus 2006].
- Part of a bigger project:
- Kan., Kuz., Sce. FG-2016: undecidability for ! ${ }^{1}$ (with !, without brackets).
- Kan., Kuz., Morrill, Sce. FSCD-2017: pseudo-polynomial algorithm for Lb (with brackets, without !). (polynomial for formulae of bounded depth)

Algorithmic Results

- The derivability problem in $!_{b} L^{1}$ is undecidable.

This solves an open question raised by Morrill and Valentín, 2015.

- The derivability problem for sequents obeying bracket non-negative condition belongs to NP.
BNC: any negative occurrence of a ! A includes neither a positive occurrence of []$^{-1} C$, nor a negative occurrence of a $\rangle C$. Morrill, Valentín 2015: an exp-time algorithm, used in the CatLog parser. NP-complete, as the original Lambek calculus [Pentus 2006].
- Part of a bigger project:
- Kan., Kuz., Sce. FG-2016: undecidability for ! ${ }^{1}$ (with !, without brackets).
- Kan., Kuz., Morrill, Sce. FSCD-2017: pseudo-polynomial algorithm for Lb (with brackets, without !). (polynomial for formulae of bounded depth)
- Next step? pseudo-polynomial algorithm for ! ${ }_{b} L^{1}$ with restrictions on!.

Algorithmic Results

- The derivability problem in $!_{b} L^{1}$ is undecidable.

This solves an open question raised by Morrill and Valentín, 2015.

- The derivability problem for sequents obeying bracket non-negative condition belongs to NP.
BNC: any negative occurrence of a ! A includes neither a positive occurrence of []$^{-1} C$, nor a negative occurrence of a $\rangle C$. Morrill, Valentín 2015: an exp-time algorithm, used in the CatLog parser. NP-complete, as the original Lambek calculus [Pentus 2006].
- Part of a bigger project:
- Kan., Kuz., Sce. FG-2016: undecidability for ! ${ }^{1}$ (with !, without brackets).
- Kan., Kuz., Morrill, Sce. FSCD-2017: pseudo-polynomial algorithm for Lb (with brackets, without !). (polynomial for formulae of bounded depth)
- Next step? pseudo-polynomial algorithm for ! ${ }_{b} L^{1}$ with restrictions on !. (open question)

Undecidability Proof Sketch

Encoding type-0 grammar derivations (follow Lincoln et al. 1992):

Undecidability Proof Sketch

Encoding type-0 grammar derivations (follow Lincoln et al. 1992):

Lemma
The following rule is admissible in $!_{b} \mathbf{L}^{\mathbf{1}}$:

$$
\frac{\Delta_{1},![]^{-1} B, \Delta_{2}, B, \Delta_{3} \rightarrow C}{\Delta_{1},![]^{-1} B, \Delta_{2}, \Delta_{3} \rightarrow C} \text { (inst) }
$$

Undecidability Proof Sketch

Encoding type-0 grammar derivations (follow Lincoln et al. 1992):

Lemma
The following rule is admissible in $!_{\mathrm{b}} \mathbf{L}^{\mathbf{1}}$:

$$
\frac{\Delta_{1},![]^{-1} B, \Delta_{2}, B, \Delta_{3} \rightarrow C}{\Delta_{1},![]^{-1} B, \Delta_{2}, \Delta_{3} \rightarrow C} \text { (inst) }
$$

$B_{i}=\left(u_{1} \cdot \ldots \cdot u_{k}\right) /\left(v_{1} \cdot \ldots \cdot v_{m}\right)$ encodes the i-th rewriting rule.

Undecidability Proof Sketch

Encoding type-0 grammar derivations (follow Lincoln et al. 1992):

Lemma
The following rule is admissible in $!_{\mathrm{b}} \mathbf{L}^{\mathbf{1}}$:

$$
\frac{\Delta_{1},![]^{-1} B, \Delta_{2}, B, \Delta_{3} \rightarrow C}{\Delta_{1},![]^{-1} B, \Delta_{2}, \Delta_{3} \rightarrow C} \text { (inst) }
$$

$B_{i}=\left(u_{1} \cdot \ldots \cdot u_{k}\right) /\left(v_{1} \cdot \ldots \cdot v_{m}\right)$ encodes the i-th rewriting rule.

$$
\begin{gathered}
!\Gamma=!B_{1}, \ldots,!B_{n} \\
!\widetilde{\Gamma}=![]^{-1} B_{1}, \ldots,![]^{-1} B_{n}, \\
!\Phi=!\left(\mathbf{1} /\left(!B_{1}\right)\right), \ldots,!\left(\mathbf{1} /\left(!B_{n}\right)\right), \text { and } \\
!\widetilde{\Phi}=!\left(\mathbf{1} /\left(![]^{-1} B_{1}\right)\right), \ldots,\left(\mathbf{1} /\left(![]^{-1} B_{n}\right)\right) .
\end{gathered}
$$

Undecidability Proof Sketch

Lemma

The following are equivalent:

1. $!_{\mathrm{b}} \mathrm{L}^{\mathbf{1}} \vdash!\widetilde{\Phi},!\widetilde{\Gamma}, a_{1}, \ldots, a_{n} \rightarrow s ;$

Undecidability Proof Sketch

Lemma

The following are equivalent:

1. $!_{b} \mathrm{~L}^{\mathbf{1}} \vdash!\widetilde{\Phi},!\widetilde{\Gamma}, a_{1}, \ldots, a_{n} \rightarrow s ;$
2. ! $L^{\mathbf{1}} \vdash!\Phi,!\Gamma, a_{1}, \ldots, a_{n} \rightarrow s$;

Undecidability Proof Sketch

Lemma

The following are equivalent:

1. $!_{b} \mathbf{L}^{\mathbf{1}} \vdash!\widetilde{\Phi},!\widetilde{\Gamma}, a_{1}, \ldots, a_{n} \rightarrow s ;$
2. ! $L^{\mathbf{1}} \vdash!\Phi,!\Gamma, a_{1}, \ldots, a_{n} \rightarrow s$;
3. $!^{1}+($ weak $) \vdash!\Gamma, a_{1}, \ldots, a_{n} \rightarrow s$;

$$
\frac{\Delta_{1}, \Delta_{2} \rightarrow C}{\Delta_{1},!A, \Delta_{2} \rightarrow C} \text { (weak) }
$$

Undecidability Proof Sketch

Lemma

The following are equivalent:

1. $!_{b} \mathbf{L}^{\mathbf{1}} \vdash!\widetilde{\Phi},!\widetilde{\Gamma}, a_{1}, \ldots, a_{n} \rightarrow s ;$
2. ! $\mathrm{L}^{\mathbf{1}} \vdash!\Phi,!\Gamma, a_{1}, \ldots, a_{n} \rightarrow s$;
3. ! $\mathrm{L}^{\mathbf{1}}+($ weak $) \vdash!\Gamma, a_{1}, \ldots, a_{n} \rightarrow s$;
4. $s \Rightarrow^{*} a_{1} \ldots a_{n}$ in the type-0 grammar.

$$
\frac{\Delta_{1}, \Delta_{2} \rightarrow C}{\Delta_{1},!A, \Delta_{2} \rightarrow C} \text { (weak) }
$$

Thank you!

