Lambek Calculus Extended with Subexponential and Bracket Modalities

Max Kanovich, Stepan Kuznetsov, Andre Scedrov

John loves Mary

John loves Mary
$$np \quad (np \setminus s) / np \quad np$$

$$\begin{array}{cccc} \mathsf{John} & \mathsf{loves} & \mathsf{Mary} \\ \mathit{np} & \left(\mathit{np} \setminus \mathit{s} \right) / \mathit{np} & \mathit{np} & \rightarrow \mathit{s} \end{array}$$

John loves Mary
$$\vdash np \quad (np \setminus s) / np \quad np \quad \rightarrow s$$

Non-commutativity: $\vdash np, np \setminus s \rightarrow np$ ("John runs"), but $\not\vdash np \setminus s, np \rightarrow s$) ("runs John").

John loves Mary
$$\vdash np \quad (np \setminus s) / np \quad np \rightarrow s$$

Non-commutativity: $\vdash np, np \setminus s \rightarrow np$ ("John runs"), but $\not\vdash np \setminus s, np \rightarrow s$) ("runs John").

Reduction rules of BCG: $A, A \setminus B \rightarrow B$; $B \mid A, A \rightarrow B$

John loves Mary
$$\vdash np \quad (np \setminus s) / np \quad np \rightarrow s$$

Non-commutativity: $\vdash np, np \setminus s \rightarrow np$ ("John runs"), but $\not\vdash np \setminus s, np \rightarrow s$) ("runs John").

Reduction rules of BCG: $A, A \setminus B \rightarrow B$; $B / A, A \rightarrow B$

[Ajdukiewicz 1935, Bar-Hillel et al. 1960]

John loves Mary

John loves Mary $np \quad (np \setminus s) / np \quad np$

 $\begin{array}{cccc} \mathsf{John} & \mathsf{loves} & \mathsf{Mary} \\ \mathit{np} & \left(\mathit{np} \setminus \mathit{s} \right) / \mathit{np} & \mathit{np} & \rightarrow \mathit{s} \end{array}$

John loves Mary
$$\vdash np \quad (np \setminus s) / np \quad np \quad \rightarrow s$$
the girl whom John loves
$$np / n \quad n \quad (n \setminus n) / (s / np) \quad np \quad (np \setminus s) / np$$

John loves Mary
$$\vdash np \quad (np \setminus s) / np \quad np \rightarrow s$$
the girl whom John loves
$$np / n \quad n \quad (n \setminus n) / (s / np) \quad np \quad (np \setminus s) / np$$

$$\rightarrow s / np$$

John loves Mary
$$\vdash np \quad (np \setminus s) / np \quad np \quad \to s$$
the girl whom John loves
$$\vdash np / n \quad n \quad (n \setminus n) / (s / np) \quad np \quad (np \setminus s) / np \quad \to np$$

$$\longrightarrow s / np$$

John loves Mary
$$\vdash np \quad (np \setminus s) / np \quad np \quad \to s$$
the girl whom John loves
$$\vdash np / n \quad n \quad (n \setminus n) / (s / np) \quad np \quad (np \setminus s) / np \quad \to np$$

Deriving principles like $np, (np \setminus s) / np \rightarrow s / np$ requires extra rules (in this particular case, associativity: $(A \setminus B) / C \leftrightarrow A \setminus (B / C)$).

 $\rightarrow s / np$

the boy who loves Mary

John loves Mary
$$\vdash np \quad (np \setminus s) / np \quad np \quad \to s$$
the girl whom John loves
$$\vdash np / n \quad n \quad (n \setminus n) / (s / np) \quad np \quad (np \setminus s) / np \quad \to np$$

$$\longrightarrow s / np$$

the boy who loves Mary
$$np/n$$
 $n \frac{(n \setminus n)}{(np \setminus s)} \frac{(np \setminus s)}{(np \setminus s)} \frac{np}{np}$

John loves Mary
$$\vdash np \quad (np \setminus s) / np \quad np \rightarrow s$$
the girl whom John loves
$$\vdash np / n \quad n \quad (n \setminus n) / (s / np) \quad np \quad (np \setminus s) / np \rightarrow np$$

$$\longrightarrow s / np$$

the boy who loves Mary
$$np/n$$
 n $(n \setminus n)/(np \setminus s)$ $(np \setminus s)/np$ np

$$\longrightarrow np \setminus s$$

John loves Mary
$$\vdash np \quad (np \setminus s) / np \quad np \quad \to s$$
the girl whom; John loves e_i

$$\vdash np / n \quad n \quad (n \setminus n) / (s / np) \quad np \quad (np \setminus s) / np \quad \to np$$

$$\longrightarrow s / np$$

the boy who loves Mary
$$\vdash np/n \quad n \quad (n \setminus n)/(np \setminus s) \quad (np \setminus s)/np \quad np \longrightarrow np$$

$$\rightarrow np \setminus s$$

John loves Mary
$$\vdash np \quad (np \setminus s) / np \quad np \quad \to s$$
the girl whom; John loves e_i

$$\vdash np / n \quad n \quad (n \setminus n) / (s / np) \quad np \quad (np \setminus s) / np \quad \to np$$

$$\longrightarrow s / np$$

the boy who;
$$e_i$$
 loves Mary
$$\vdash np/n \quad n \quad (n \setminus n)/(np \setminus s) \quad (np \setminus s)/np \quad np \longrightarrow np$$

Another example (from Italian, see [Moot and Retoré 2012]): "She/He watches the train passing"

```
Guarda passare il treno
She/He watches pass the train
```

Another example (from Italian, see [Moot and Retoré 2012]): "She/He watches the train passing"

Another example (from Italian, see [Moot and Retoré 2012]): "She/He watches the train passing"

Transform into a question: "What does she/he watch passing?"

Cosa guarda passare ?
$$\rightarrow s$$

Here we need transitivity: A/B, $B/C \rightarrow A/C$.

Another example (from Italian, see [Moot and Retoré 2012]): "She/He watches the train passing"

Transform into a question: "What does she/he watch passing?"

Cosa guarda passare?

$$\vdash q/(s/np)$$
 s/inf inf/np $\rightarrow s$

Here we need transitivity: A/B, $B/C \rightarrow A/C$.

Another example (from Italian, see [Moot and Retoré 2012]): "She/He watches the train passing"

Transform into a question: "What does she/he watch passing?"

Cosa guarda passare?
$$\vdash q/(s/np) \quad \underbrace{s/inf \quad inf/np}_{\rightarrow s/np} \rightarrow s$$

Here we need transitivity: A/B, $B/C \rightarrow A/C$.

Extending Categorial Grammar: Two Approaches

1. Add necessary principles as extra axioms to BCG → Combinatory Categorial Grammar (CCG) [Steedman 1996]

Extending Categorial Grammar: Two Approaches

- Add necessary principles as extra axioms to BCG

 ∼ Combinatory Categorial Grammar (CCG) [Steedman 1996]
- 2. One calculus to derive them all! \sim Lambek Grammar [Lambek 1958]

The Lambek Calculus (L*)

$$\overline{A o A}$$

$$\frac{\Pi \to A \quad \Delta_{1}, B, \Delta_{2} \to C}{\Delta_{1}, B / A, \Pi, \Delta_{2} \to C} (/ \to) \qquad \frac{\Pi, A \to B}{\Pi \to B / A} (\to /)$$

$$\frac{\Pi \to A \quad \Delta_{1}, B, \Delta_{2} \to C}{\Delta_{1}, \Pi, A \setminus B, \Delta_{2} \to C} (\setminus \to) \qquad \frac{A, \Pi \to B}{\Pi \to A \setminus B} (\to \setminus)$$

[Lambek 1958, 1961, ...]

The Lambek Calculus (L*)

$$\overline{A o A}$$

$$\frac{\Pi \to A \quad \Delta_1, B, \Delta_2 \to C}{\Delta_1, B/A, \Pi, \Delta_2 \to C} \ (/\to) \qquad \frac{\Pi, A \to B}{\Pi \to B/A} \ (\to/)$$

$$\frac{\Pi \to A \quad \Delta_1, B, \Delta_2 \to C}{\Delta_1, \Pi, A \setminus B, \Delta_2 \to C} \ (\setminus \to) \qquad \frac{A, \Pi \to B}{\Pi \to A \setminus B} \ (\to \setminus)$$

[Lambek 1958, 1961, ...]

. . .

$$\mathbf{L}^* \vdash (A \setminus B) / C \leftrightarrow A \setminus (B / C)$$
$$\mathbf{L}^* \vdash A / B, B / C \rightarrow A / C$$

- Lambek grammars generate precisely context-free languages [Pentus 1993].
 - his means that formally their expressive power is not greater than the power of BCGs.

 Lambek grammars generate precisely context-free languages [Pentus 1993].

This means that formally their expressive power is not greater than the power of BCGs.

- Lambek grammars generate precisely context-free languages [Pentus 1993].
 - This means that formally their expressive power is not greater than the power of BCGs.
- ► The Lambek calculus is NP-complete [Pentus 2006, Savateev 2008].
 - (Steedman's CCGs enjoy polynomial-time parsing.)

- Lambek grammars generate precisely context-free languages [Pentus 1993].
 - This means that formally their expressive power is not greater than the power of BCGs.
- ► The Lambek calculus is NP-complete [Pentus 2006, Savateev 2008].
 - (Steedman's CCGs enjoy polynomial-time parsing.)
- Polynomial-time algorithm for fragments of bounded depth [Pentus 2010].
 - (Running time $O(2^d n^4)$, where n is the length of the sequent and d is the implication nesting depth.)

Unwanted Derivations

book which John laughed without reading

book which John laughed without reading
$$CN = \frac{(CN \setminus CN)}{(S \mid N)}$$

$$\vdash \quad \begin{matrix} \mathsf{book} & \mathsf{which} \\ \mathsf{CN} & (\mathit{CN} \setminus \mathit{CN}) \, / (\mathit{S} \, / \, \mathit{N}) \end{matrix} \quad \underbrace{\begin{matrix} \mathsf{John \ laughed \ without \ reading}}_{\mathit{S} \, / \, \mathit{N}} \quad \to \mathit{CN} \end{matrix}$$

$$\vdash \quad \begin{matrix} \mathsf{book} & \mathsf{which} \\ \mathsf{CN} & (\mathit{CN} \setminus \mathit{CN}) \, / (\mathit{S} \, / \, \mathit{N}) \end{matrix} \quad \underbrace{\begin{matrix} \mathsf{John \ laughed \ without \ reading}}_{\mathit{S} \, / \, \mathit{N}} \quad \to \mathit{CN} \end{matrix}$$

* book which John laughed without reading
$$\vdash CN \quad (CN \setminus CN)/(S \mid N) \quad \underbrace{S \mid N} \quad \to CN$$

who

girl

* book which John laughed without reading
$$\vdash CN \quad (CN \setminus CN)/(S/N) \quad \underbrace{S/N} \quad \to CN$$

John likes Mary and Pete likes

* book which John laughed without reading
$$\vdash CN \quad (CN \setminus CN)/(S/N) \quad \underbrace{S/N} \quad \to CN$$

* girl who John likes Mary and Pete likes
$$\vdash CN (CN \setminus CN)/(S/N) \xrightarrow{S/N} \to CN$$

(cf. "John likes Mary and Pete likes Kate" o S; "and" is of type $S \setminus S / S$)

The Lambek Calculus with Brackets

[Morrill 1992, Moortgat 1995]

$$\begin{array}{c|c} \overline{A \to A} \\ \hline \square \to A & \Delta(B) \to C \\ \hline \Delta(\Pi, A \setminus B) \to C \\ \hline \end{array} \quad \begin{array}{c|c} A, \Pi \to B \\ \hline \Pi \to A \setminus B \\ \hline \end{array} \quad \begin{array}{c} \Gamma(A, B) \to C \\ \hline \Gamma(A \cdot B) \to C \\ \hline \end{array} \quad \begin{array}{c} \Pi \to A & \Delta(B) \to C \\ \hline \Delta(B \mid A, \Pi) \to C \\ \hline \end{array} \quad \begin{array}{c|c} \Pi, A \to B \\ \hline \Pi \to B \mid A \\ \hline \end{array} \quad \begin{array}{c} \Gamma \to A & \Delta \to B \\ \hline \Gamma, \Delta \to A \cdot B \\ \hline \end{array} \quad \begin{array}{c} \Delta([A]) \to C \\ \hline \Delta(\langle \rangle A) \to C \\ \hline \end{array} \quad \begin{array}{c|c} \Pi \to A \\ \hline \Gamma[\Pi] \to A \\ \hline \end{array} \quad \begin{array}{c|c} \Delta(A) \to C \\ \hline \Delta([C]^{-1}A] \to C \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\$$

The Lambek Calculus with Brackets

[Morrill 1992, Moortgat 1995]

$$\begin{array}{c|c} \overline{A \to A} \\ \hline \frac{\Pi \to A \quad \Delta(B) \to C}{\Delta(\Pi, A \setminus B) \to C} & \frac{A, \Pi \to B}{\Pi \to A \setminus B} & \frac{\Gamma(A, B) \to C}{\Gamma(A \cdot B) \to C} \\ \hline \frac{\Pi \to A \quad \Delta(B) \to C}{\Delta(B / A, \Pi) \to C} & \frac{\Pi, A \to B}{\Pi \to B / A} & \frac{\Gamma \to A \quad \Delta \to B}{\Gamma, \Delta \to A \cdot B} \\ \hline \frac{\Delta([A]) \to C}{\Delta(\langle \rangle A) \to C} & \frac{\Pi \to A}{[\Pi] \to \langle \rangle A} & \frac{\Delta(A) \to C}{\Delta([]^{-1}A]) \to C} & \frac{[\Pi] \to A}{\Pi \to []^{-1}A} \\ \hline \end{array}$$

Brackets introduce controlled non-associativity.

The Lambek Calculus with Brackets

[Morrill 1992, Moortgat 1995]

$$\begin{array}{c|c} \overline{A \to A} \\ \hline \square \to A & \Delta(B) \to C \\ \hline \Delta(\Pi, A \setminus B) \to C \\ \hline \end{array} \quad \begin{array}{c|c} A, \Pi \to B \\ \hline \Pi \to A \setminus B \\ \hline \end{array} \quad \begin{array}{c} \Gamma(A, B) \to C \\ \hline \Gamma(A \cdot B) \to C \\ \hline \end{array} \quad \begin{array}{c} \Pi \to A & \Delta(B) \to C \\ \hline \Delta(B \mid A, \Pi) \to C \\ \hline \end{array} \quad \begin{array}{c|c} \Pi, A \to B \\ \hline \Pi \to B \mid A \\ \hline \end{array} \quad \begin{array}{c} \Gamma \to A & \Delta \to B \\ \hline \Gamma, \Delta \to A \cdot B \\ \hline \end{array} \quad \begin{array}{c} \Delta([A]) \to C \\ \hline \Delta(\langle \rangle A) \to C \\ \hline \end{array} \quad \begin{array}{c|c} \Pi \to A \\ \hline \Gamma[\Pi] \to A \\ \hline \end{array} \quad \begin{array}{c|c} \Delta(A) \to C \\ \hline \Delta([C]^{-1}A] \to C \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\ \hline \end{array} \quad \begin{array}{c|c} \Gamma \to A & \Delta \to B \\$$

- Brackets introduce controlled non-associativity.
- ► Cut elimination proved by Moortgat [1996].

book which John laughed without reading

book which John laughed [without reading]

▶ book which John laughed [without reading] $CN, (CN \setminus CN) / (S / CN), N, N \setminus S, [[]^{-1}((N \setminus S) \setminus (N \setminus S)) / (N \setminus S), (N \setminus S) / N] \to CN$

▶ book which John laughed [without reading] $CN, (CN \setminus CN) / (S / CN), N, N \setminus S, [[]^{-1}((N \setminus S) \setminus (N \setminus S)) / (N \setminus S), (N \setminus S) / N] \to CN$ This sequent is not derivable.

- ▶ book which John laughed [without reading] $CN, (CN \setminus CN) / (S / CN), N, N \setminus S, [[]^{-1}((N \setminus S) \setminus (N \setminus S)) / (N \setminus S), (N \setminus S) / N] \to CN$ This sequent is not derivable.
 - girl who John likes Mary and Pete likes

- ▶ book which John laughed [without reading] CN, $(CN \setminus CN) / (S / CN)$, N, $N \setminus S$, $[[]^{-1}((N \setminus S) \setminus (N \setminus S)) / (N \setminus S), (N \setminus S) / N] \to CN$ This sequent is not derivable.
 - ▶ girl who [John likes Mary and Pete likes]

- ▶ book which John laughed [without reading] $CN, (CN \setminus CN) / (S / CN), N, N \setminus S, [[]^{-1}((N \setminus S) \setminus (N \setminus S)) / (N \setminus S), (N \setminus S) / N] \to CN$ This sequent is not derivable.
- ▶ girl who [John likes Mary and Pete likes] $CN, (CN \setminus CN) / (S / CN), [N, (N \setminus S) / N, N, (S \setminus []^{-1}S) / S, N, (N \setminus S) / N] \to CN$

- ▶ book which John laughed [without reading] $CN, (CN \setminus CN) / (S / CN), N, N \setminus S, [[]^{-1}((N \setminus S) \setminus (N \setminus S)) / (N \setminus S), (N \setminus S) / N] \to CN$ This sequent is not derivable.
- ▶ girl who [John likes Mary and Pete likes] $CN, (CN \setminus CN) / (S / CN), [N, (N \setminus S) / N, N, (S \setminus []^{-1}S) / S, N, (N \setminus S) / N] \to CN$ Neither is this one.

the girl whom John met yesterday

the girl $whom_i$ John met e_i yesterday

the girl $whom_i$ John met e_i yesterday

the girl

whom;

John met *e_i* yesterday

$$\rightarrow S/!N$$

$$\frac{\Delta(!A,\Gamma) \to C}{\Delta(\Gamma,!A) \to C} \text{ (perm}_1) \qquad \frac{\Delta(A) \to C}{\Delta(!A) \to C} \text{ (! \to)}$$

the girl

whom;

John met *e_i* yesterday

$$\underbrace{\hspace{1cm} \rightarrow S \, / \, ! \, N}$$

$$\frac{\Delta(!A,\Gamma) \to C}{\Delta(\Gamma,!A) \to C} \text{ (perm}_1) \qquad \frac{\Delta(A) \to C}{\Delta(!A) \to C} \text{ (! \to)}$$

$$\frac{\frac{N,(N\setminus S)\,/\,N,\,N,(N\setminus S)\,\backslash(N\setminus S)\to S}{N,(N\setminus S)\,/\,N,\,!\,N,(N\setminus S)\,\backslash(N\setminus S)\to S}}{\frac{N,(N\setminus S)\,/\,N,(N\setminus S)\,\backslash(N\setminus S),\,!\,N\to S}{N,(N\setminus S)\,/\,N,(N\setminus S)\,\backslash(N\setminus S)\to S\,/\,!\,N}}(!\to)$$

the girl whom; John met
$$e_i$$
 yesterday
$$\frac{(CN \setminus CN)/(S/!N)}{\to S/!N}$$

$$\frac{\Delta(!A,\Gamma) \to C}{\Delta(\Gamma,!A) \to C} \text{ (perm}_1) \qquad \frac{\Delta(A) \to C}{\Delta(!A) \to C} \text{ (! \to)}$$

$$\frac{\frac{N, (N \setminus S) / N, N, (N \setminus S) \setminus (N \setminus S) \to S}{N, (N \setminus S) / N, !N, (N \setminus S) \setminus (N \setminus S) \to S}}{\frac{N, (N \setminus S) / N, (N \setminus S) \setminus (N \setminus S), !N \to S}{N, (N \setminus S) / N, (N \setminus S) \setminus (N \setminus S) \to S / !N}} (! \to)$$

the girl whom; John met
$$e_i$$
 yesterday $\longrightarrow S / !N$

$$\frac{\Delta(!A,\Gamma) \to C}{\Delta(\Gamma,!A) \to C} \text{ (perm}_1) \qquad \frac{\Delta(A) \to C}{\Delta(!A) \to C} \text{ (! \to)}$$

$$\frac{\frac{N, (N \setminus S) / N, N, (N \setminus S) \setminus (N \setminus S) \to S}{N, (N \setminus S) / N, !N, (N \setminus S) \setminus (N \setminus S) \to S}}{\frac{N, (N \setminus S) / N, (N \setminus S) \setminus (N \setminus S), !N \to S}{N, (N \setminus S) / N, (N \setminus S) \setminus (N \setminus S) \to S / !N}} (! \to)$$

the paper that John signed without reading

the paper that i John signed e_i without reading e_i

the paper that; John signed e_i without reading e_i $\longrightarrow S / !N$

the paper that; John signed
$$e_i$$
 without reading e_i

$$\longrightarrow S / !N$$

$$\frac{\Delta(!A,\Gamma) \to C}{\Delta(\Gamma,!A) \to C} \text{ (perm}_1) \qquad \frac{\Delta(A) \to C}{\Delta(!A) \to C} \text{ (! \to)}$$

$$\frac{\Delta(!A,!A) \to C}{\Delta(!A) \to C} \text{ (contr)}$$

the paper that, John signed
$$e_i$$
 [without reading e_i] $\rightarrow S / !N$

$$\frac{\Delta(!A,\Gamma) \to C}{\Delta(\Gamma,!A) \to C} \text{ (perm}_1) \qquad \frac{\Delta(A) \to C}{\Delta(!A) \to C} \text{ (! \to)}$$

$$\frac{\Delta(!A, !A) \to C}{\Delta(!A) \to C} \text{ (contr)}$$

the paper that, John signed
$$e_i$$
 [without reading e_i] $\rightarrow S / !N$

$$\frac{\Delta(!A,\Gamma) \to C}{\Delta(\Gamma,!A) \to C} \text{ (perm}_1) \qquad \frac{\Delta(A) \to C}{\Delta(!A) \to C} \text{ (! \to)}$$

$$\frac{\Delta(!A_1,\ldots,!A_n,[!A_1,\ldots,!A_n,\Gamma])\to B}{\Delta(!A_1,\ldots,!A_n,\Gamma)\to B} \text{ (contr_b)}$$

the paper that, John signed
$$e_i$$
 [without reading e_i] $\longrightarrow S / !N$

$$\frac{\Delta(!A,\Gamma) \to C}{\Delta(\Gamma,!A) \to C} \text{ (perm}_1) \qquad \frac{\Delta(A) \to C}{\Delta(!A) \to C} \text{ (! \to)}$$

$$\frac{\Delta(!A_1,\ldots,!A_n,[!A_1,\ldots,!A_n,\Gamma])\to B}{\Delta(!A_1,\ldots,!A_n,\Gamma)\to B} \text{ $(\operatorname{contr}_{\bf b})$ } \quad \begin{array}{c} \textbf{causes} \\ \textbf{undecidability} \end{array}$$

The Lambek Calculus with Subexponential and Bracket Modalities $(!_b L^1)$

odalities
$$(\mathbf{!_bL^1})$$
 $\overline{A \to A}$ $\overline{\Lambda \to 1}$

$$\frac{\Gamma \to B \quad \Delta(C) \to D}{\Delta(C/B,\Gamma) \to D} \ (/\to) \qquad \frac{\Gamma, B \to C}{\Gamma \to C/B} \ (\to /) \qquad \frac{\Delta(A,B) \to D}{\Delta(A \to B) \to D} \ (\to)$$

$$\frac{\Gamma \to A \quad \Delta(C) \to D}{\Delta(\Gamma, A \setminus C) \to D} \ (\setminus \to) \qquad \frac{A,\Gamma \to C}{\Gamma \to A \setminus C} \ (\to \setminus) \qquad \frac{\Gamma_1 \to A \quad \Gamma_2 \to B}{\Gamma_1, \Gamma_2 \to A \to B} \ (\to \to)$$

$$\frac{\Delta(\Lambda) \to A}{\Delta(1) \to A} \ (1 \to) \qquad \frac{\Delta([A]) \to C}{\Delta((A) \to C)} \ ((A) \to C) \qquad \frac{\Pi \to A}{[\Pi] \to (A)} \ (\to (A) \to C)$$

$$\frac{\Gamma(A) \to B}{\Gamma(A) \to B} \ (A \to C) \qquad \frac{\Delta(A) \to C}{\Delta([A] \to C)} \ ([A] \to C) \qquad \frac{\Pi(A) \to A}{\Pi \to [A] \to (A)} \ (\to C)$$

$$\frac{A(A,B) \to D}{\Gamma_1, \Gamma_2 \to A \to B} \ (\to C)$$

$$\frac{\Gamma(A) \to B}{\Gamma(A) \to B} \ (A \to C) \qquad \frac{\Gamma(A) \to C}{\Gamma(A) \to B} \ (\to C)$$

$$\frac{\Gamma(A) \to B}{\Gamma(A) \to B} \ (\to C) \qquad \frac{\Delta(A) \to C}{\Delta(A) \to C} \ ([A] \to C) \qquad \frac{\Gamma(A) \to C}{\Gamma(A) \to B} \ (\to C)$$

$$\frac{\Lambda(A,B) \to D}{\Gamma_1, \Gamma_2 \to A \to B} \ (\to C)$$

The Lambek Calculus with Subexponential and Bracket Modalities ($!_h L^1$)

odalities
$$(!_{\mathbf{b}} \mathbf{L}^{\mathbf{l}})$$
 $\overline{A \to A}$ $\overline{\Lambda \to \mathbf{l}}$ $\overline{A \to A}$ $\overline{\Lambda \to \mathbf{l}}$ $\overline{A \to A}$ $\overline{A $\overline{A \to A}$

► A fragment of **Db!**_b by Morrill and Valentín, 2015.

The Lambek Calculus with Subexponential and Bracket

Modalities
$$(!_b L^1)$$
 $\overline{A \to A}$ $\overline{A \to 1}$
$$\frac{\Gamma \to B \quad \Delta(C) \to D}{\Delta(C/B, \Gamma) \to D} \ (/\to) \qquad \frac{\Gamma, B \to C}{\Gamma \to C/B} \ (\to /) \qquad \frac{\Delta(A, B) \to D}{\Delta(A \to B) \to D} \ (\to \to)$$

$$\frac{\Gamma \to A \quad \Delta(C) \to D}{\Delta(\Gamma, A \setminus C) \to D} \quad (\setminus \to) \qquad \frac{A, \Gamma \to C}{\Gamma \to A \setminus C} \quad (\to \setminus) \qquad \frac{\Gamma_1 \to A \quad \Gamma_2 \to B}{\Gamma_1, \Gamma_2 \to A \cdot B} \quad (\to \cdot)$$

$$\frac{\Delta(\Lambda) \to A}{\Delta(\mathbf{1}) \to A} (\mathbf{1} \to) \qquad \frac{\Delta([A]) \to C}{\Delta(\langle A) \to C} (\langle \rangle \to) \qquad \frac{\Pi \to A}{[\Pi] \to \langle \rangle A} (\to \langle \rangle)$$

$$\frac{\overline{\Delta(1)} \to A}{\overline{\Delta(1)} \to A} \xrightarrow{(1 \to)} \frac{\overline{\Delta(1)} \to C}{\overline{\Delta(1)} \to C} \xrightarrow{(1 \to 1)} \frac{\overline{\Gamma(1)} \to A}{\overline{\Gamma(1)} \to B} \xrightarrow{(1 \to 1)} \frac{\overline{\Delta(1)} \to C}{\overline{\Delta(1)} \to C} \xrightarrow{(1 \to 1)} \frac{\overline{\Gamma(1)} \to A}{\overline{\Gamma(1)} \to B} \xrightarrow{(1 \to 1)} \frac{\overline{\Gamma(1)} \to A}{\overline{\Gamma$$

$$\frac{!A_{1}, \dots, !A_{n} \to A}{!A_{1}, \dots, !A_{n} \to !A} (\to !) \qquad \frac{\Delta(!A_{1}, \dots, !A_{n}, [!A_{1}, \dots, !A_{n}, \Gamma]) \to B}{\Delta(!A_{1}, \dots, !A_{n}, \Gamma) \to B} (\operatorname{contr}_{\mathbf{b}})$$

$$\frac{\Delta(!A, \Gamma) \to B}{\Delta(\Gamma, !A) \to B} (\operatorname{perm}_{1}) \qquad \frac{\Delta(\Gamma, !A) \to B}{\Delta(!A, \Gamma) \to B} (\operatorname{perm}_{2}) \qquad \frac{\Pi \to A \quad \Delta(A) \to C}{\Delta(\Pi) \to C} (\operatorname{cut})$$

- ► A fragment of **Db!**_b by Morrill and Valentín, 2015.
- Our analysis of syntactic phenomena is due to Morrill, 2011–2017.

Cut Elimination in !bL1

We use deep cut elimination strategy (cf. Braüner and de Paiva 1996).

Cut Elimination in !bL1

We use deep cut elimination strategy (cf. Braüner and de Paiva 1996).

► The derivability problem in !_bL¹ is undecidable.

► The derivability problem in !_bL¹ is undecidable. This solves an open question raised by Morrill and Valentín, 2015.

- ► The derivability problem in !_bL¹ is undecidable. This solves an open question raised by Morrill and Valentín, 2015.
- ► The derivability problem for sequents obeying *bracket* non-negative condition belongs to NP.

- ► The derivability problem in !_bL¹ is undecidable. This solves an open question raised by Morrill and Valentín, 2015.
- ► The derivability problem for sequents obeying *bracket* non-negative condition belongs to NP.
 - BNC: any negative occurrence of a !A includes neither a positive occurrence of $[]^{-1}C$, nor a negative occurrence of a $\langle \rangle C$.

- ► The derivability problem in !_bL¹ is undecidable. This solves an open question raised by Morrill and Valentín, 2015.
- ► The derivability problem for sequents obeying *bracket* non-negative condition belongs to NP.

BNC: any negative occurrence of a !A includes neither a positive occurrence of $[]^{-1}C$, nor a negative occurrence of a $\langle\rangle C$.

Morrill, Valentín 2015: an exp-time algorithm, used in the CatLog parser.

- ► The derivability problem in !_bL¹ is undecidable. This solves an open question raised by Morrill and Valentín, 2015.
- ► The derivability problem for sequents obeying *bracket* non-negative condition belongs to NP.

BNC: any negative occurrence of a !A includes neither a positive occurrence of $[]^{-1}C$, nor a negative occurrence of a $\langle \rangle C$.

Morrill, Valentín 2015: an exp-time algorithm, used in the CatLog parser.

NP-complete, as the original Lambek calculus [Pentus 2006].

- ► The derivability problem in !_bL¹ is undecidable. This solves an open question raised by Morrill and Valentín, 2015.
- ► The derivability problem for sequents obeying bracket non-negative condition belongs to NP.
 BNC: any negative occurrence of a !A includes neither a positive occurrence of []⁻¹C, nor a negative occurrence of a ⟨⟩C.
 Morrill, Valentín 2015: an exp-time algorithm, used in the CatLog parser.
 NP-complete, as the original Lambek calculus [Pentus 2006].
- Part of a bigger project:

- ► The derivability problem in !_bL¹ is undecidable. This solves an open question raised by Morrill and Valentín, 2015.
- The derivability problem for sequents obeying bracket non-negative condition belongs to NP.
 BNC: any negative occurrence of a !A includes neither a positive occurrence of []⁻¹C, nor a negative occurrence of a ⟨⟩C.
 Morrill, Valentín 2015: an exp-time algorithm, used in the CatLog parser.
 NP-complete, as the original Lambek calculus [Pentus 2006].
- Part of a bigger project:
 - ► Kan., Kuz., Sce. FG-2016: undecidability for !L¹ (with !, without brackets).

- ► The derivability problem in !_bL¹ is undecidable. This solves an open question raised by Morrill and Valentín, 2015.
- The derivability problem for sequents obeying bracket non-negative condition belongs to NP.
 BNC: any negative occurrence of a !A includes neither a positive occurrence of []⁻¹C, nor a negative occurrence of a ⟨⟩C.
 Morrill, Valentín 2015: an exp-time algorithm, used in the CatLog parser.
 NP-complete, as the original Lambek calculus [Pentus 2006].
- Part of a bigger project:
 - Kan., Kuz., Sce. FG-2016: undecidability for !L¹ (with !, without brackets).
 - Kan., Kuz., Morrill, Sce. FSCD-2017: pseudo-polynomial algorithm for Lb (with brackets, without!).
 (polynomial for formulae of bounded depth)

- ► The derivability problem in !_bL¹ is undecidable. This solves an open question raised by Morrill and Valentín, 2015.
- ► The derivability problem for sequents obeying *bracket* non-negative condition belongs to NP.

BNC: any negative occurrence of a !A includes neither a positive occurrence of $[]^{-1}C$, nor a negative occurrence of a $\langle\rangle C$. Morrill, Valentín 2015: an exp-time algorithm, used in the CatLog parser. NP-complete, as the original Lambek calculus [Pentus 2006].

Part of a bigger project:

- ► Kan., Kuz., Sce. FG-2016: undecidability for !L¹ (with !, without brackets).
- ► Kan., Kuz., Morrill, Sce. FSCD-2017: pseudo-polynomial algorithm for **Lb** (with brackets, without !). (polynomial for formulae of bounded depth)
- ► Next step? pseudo-polynomial algorithm for !_bL¹ with restrictions on !.

- ► The derivability problem in !_bL¹ is undecidable. This solves an open question raised by Morrill and Valentín, 2015.
- ► The derivability problem for sequents obeying *bracket* non-negative condition belongs to NP.

 BNC: any negative occurrence of a IA includes neither a positive

BNC: any negative occurrence of a !A includes neither a positive occurrence of $[]^{-1}C$, nor a negative occurrence of a $\langle \rangle C$. Morrill, Valentín 2015: an exp-time algorithm, used in the CatLog parser. NP-complete, as the original Lambek calculus [Pentus 2006].

- Part of a bigger project:
 - ► Kan., Kuz., Sce. FG-2016: undecidability for !L¹ (with !, without brackets).
 - ► Kan., Kuz., Morrill, Sce. FSCD-2017: pseudo-polynomial algorithm for **Lb** (with brackets, without !). (polynomial for formulae of bounded depth)
 - ► Next step? pseudo-polynomial algorithm for !_bL¹ with restrictions on !. (open question)

Encoding type-0 grammar derivations (follow Lincoln et al. 1992):

Encoding type-0 grammar derivations (follow Lincoln et al. 1992):

Lemma

The following rule is admissible in $!_b L^1$:

$$\frac{\Delta_1, ! []^{-1}B, \Delta_2, B, \Delta_3 \to C}{\Delta_1, ! []^{-1}B, \Delta_2, \Delta_3 \to C} \text{ (inst)}$$

Encoding type-0 grammar derivations (follow Lincoln et al. 1992):

Lemma

The following rule is admissible in $!_b L^1$:

$$\frac{\Delta_1, ! []^{-1}B, \Delta_2, B, \Delta_3 \to C}{\Delta_1, ! []^{-1}B, \Delta_2, \Delta_3 \to C} \text{ (inst)}$$

 $B_i = (u_1 \cdot \ldots \cdot u_k)/(v_1 \cdot \ldots \cdot v_m)$ encodes the *i*-th rewriting rule.

Encoding type-0 grammar derivations (follow Lincoln et al. 1992):

Lemma

The following rule is admissible in $!_b L^1$:

$$\frac{\Delta_1, ! []^{-1}B, \Delta_2, B, \Delta_3 \to C}{\Delta_1, ! []^{-1}B, \Delta_2, \Delta_3 \to C} \text{ (inst)}$$

 $B_i = (u_1 \cdot \ldots \cdot u_k) / (v_1 \cdot \ldots \cdot v_m)$ encodes the *i*-th rewriting rule.

$$\begin{split} !\Gamma &= !B_1, \dots, !B_n, \\ !\widetilde{\Gamma} &= ! \left[\right]^{-1} B_1, \dots, ! \left[\right]^{-1} B_n, \\ !\Phi &= ! (\mathbf{1}/(!B_1)), \dots, ! (\mathbf{1}/(!B_n)), \text{ and } \\ !\widetilde{\Phi} &= ! (\mathbf{1}/(! \left[\right]^{-1} B_1)), \dots, ! (\mathbf{1}/(! \left[\right]^{-1} B_n)). \end{split}$$

Lemma

$$1. \ \textbf{!}_{\textbf{b}}\textbf{L}^{\textbf{1}} \vdash \textbf{!}\widetilde{\boldsymbol{\varphi}}, \textbf{!}\widetilde{\boldsymbol{\Gamma}}, \textbf{\textit{a}}_{1}, \ldots, \textbf{\textit{a}}_{\textit{n}} \rightarrow \textbf{\textit{s}};$$

Lemma

- 1. $!_{\mathbf{b}} \mathbf{L}^{1} \vdash !\widetilde{\Phi}, !\widetilde{\Gamma}, a_{1}, \ldots, a_{n} \rightarrow s;$
- 2. $!\mathbf{L}^1 \vdash !\Phi, !\Gamma, a_1, \ldots, a_n \rightarrow s;$

Lemma

- 1. $\mathbf{I}_{\mathbf{b}}\mathbf{L}^{\mathbf{1}} \vdash \mathbf{P}\widetilde{\Phi}, \mathbf{P}\widetilde{\Gamma}, a_{1}, \ldots, a_{n} \rightarrow s;$
- 2. $!L^1 \vdash !\Phi, !\Gamma, a_1, \ldots, a_n \rightarrow s;$
- 3. $!\mathbf{L}^1 + (\text{weak}) \vdash !\Gamma, a_1, \dots, a_n \rightarrow s;$

$$\frac{\Delta_1,\Delta_2\to \textit{C}}{\Delta_1,!\textit{A},\Delta_2\to \textit{C}} \text{ (weak)}$$

Lemma

- 1. $\mathbf{I}_{\mathbf{b}}\mathbf{L}^{\mathbf{1}}\vdash \mathbf{I}\widetilde{\Phi}, \mathbf{I}\widetilde{\Gamma}, a_{1}, \ldots, a_{n} \rightarrow s;$
- 2. $!L^1 \vdash !\Phi, !\Gamma, a_1, \ldots, a_n \rightarrow s;$
- 3. $!L^1 + (\text{weak}) \vdash !\Gamma, a_1, \dots, a_n \to s;$
- 4. $s \Rightarrow^* a_1 \dots a_n$ in the type-0 grammar.

$$\frac{\Delta_1,\Delta_2\to \textit{C}}{\Delta_1,!\textit{A},\Delta_2\to \textit{C}} \text{ (weak)}$$

Thank you!