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You probably know something
about justification logics already.

You certainly know lots
about modal logics.

So my background will be rather casual.
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Modal logics have ⇤X,

(X is necessary).

Justification logics have t:X,

(X is so for reason t).

What it means to be a reason
varies from logic to logic.

It can be quite arbitrary.

Just as arbitrary as what necessity
means in modal logics.



Justification Terms
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These are built up from justification variables

(which represent arbitrary justifications.)

And justification constants

(which justify unanalyzed, accepted truths:
axioms.)
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Building up uses justification function symbols.

A minimum set consists of · and +.

· embodies modus ponens:

if t justifies X � Y and u justifies X
then t · u is intended to justify Y .

+ embodies weakening :
if either t or u justifies X
then t+ u also justifies X.

There may be other function symbols,
depending on the particular logic.



The Logic J0
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Axiom schemes:

All tautologies (or enough of them).

t:(X � Y ) � [u:X � (t · u):y]
[t:X _ u:X] � (t+ u):X

Rule:

X,X � Y ) Y (modus ponens)



Constant Specification
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I’m skipping details here.

A constant specification CS assigns

some constant to each axiom, and to

each member of CS.

J is J0 plus some

arbitrary constant specification.



Internalization
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If X is provable in J
then t:X is provable

for some justification term t.



Example – Proof in J
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1. X � (X _ Y ) (tautology)
2. a:(X � (X _ Y )) (internalization)
3. a:(X � (X _ Y )) � (v1:X � (a · v1):(X _ Y )) (axiom)

4. v1:X � (a · v1):(X _ Y ) (modus ponens)

5. v2:Y � (b · v1):(X _ Y ) (similarly)
6. (a · v1):(X _ Y ) � (a · v1 + b · v2):(X _ Y ) (axiom)

7. (b · v2):(X _ Y ) � (a · v1 + b · v2):(X _ Y ) (axiom)

8. (v1:X _ v2:Y ) � (a · v1 + b · v2):(X _ Y ) (4, 5, 6, 7)



The Forgetful Functor
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Define a map from justification formulas

to modal formulas:

[t:X]� = ⇤X�

and otherwise it’s a boolean homomorphism.
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For example,

[(v1:X _ v2:Y ) � (a · v1 + b · v2):(X _ Y )]� =
= (⇤P _⇤Q) � ⇤(P _Q).

This maps J theorems to K theorems.

True for axioms,
true for members of constant specification,

preserved by modus ponens.
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The central fact is that
this maps the theorems of J

onto the theorems of K.

Put another way,
every theorem of modal K

has an analysis of its reasoning in J.
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Justification logic J and modal logic K
are counterparts.

1. If X is provable in J using any constant specification then X�
is a theorem

of K.

2. If Y is a theorem of K then there is some justification formula X so that

X� = Y , where X is provable in J using some axiomatically appropriate

constant specification.

Realization
In fact, X can have distinct justification variables
where Y has negative necessitation operators.

There is a hidden input/output modal structure.



Extending This Beyond J
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There are infinitely many modal logics.

Given a modal logic,
does there exist a justification logic

that is a counterpart?

Which modal logics have
the kind of analysis a

justification logic provides?
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One can add additional justification function symbols.

One can add additional axioms
governing those function symbols.

One might even add additional rules of inference,
though this tends to be hard since

it can lead to problems
with Internalization.

(And extend constant specifications
to cover these new axioms.)
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The first justification logic was called LP,
for logic of proofs.

It was created by Sergei Artemov,
as an essential part of a project

to provide an arithmetic interpretation
of intuitionistic logic.
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It adds a justification checker operation to J,
denoted !

And an axiom scheme

t:X �!t:t:X

It also adds a factivity axiom scheme

t:X � X
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LP corresponds to modal S4.

Without factivity, correspondence is with K4.

But, how far does this phenomenon go?
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Which modal logics have
corresponding justification logics?

The heart of it is:
for what modal/justification pairs
is a realization theorem provable?



Realization
How Proved?
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There are two kinds of realization proofs:
constructive

non-constructive

Constructive proofs are the
most informative.

Non-constructive cover the
broadest range.
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Constructive proofs need a
cut-free modal proof procedure.

They use a proof as input.

So far the following have been used:
sequent calculi

semantic tableaus
hypersequents

nested sequents
prefixed tableaus

It is not known how to use
labeled deductive systems,

which would be the broadest machinery.
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Non-constructive proofs use a
possible world semantics for

justification logics.

More about this shortly.

I will discuss some representative examples next.



The Original Example
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Justification logic LP
corresponds to modal logic S4.

This is the oldest example.
For it, realization has been proved

by every known method.



24

S4 was chosen because
Gödel’s translation mapped

intuitionistic logic to S4.

We use the version of the translation
that inserts a necessity symbol

in front of every intuitionistic subformula.

Well, what about other intermediate logics?
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At the moment,
I only know how to handle two

intermediate logics,
but this is already illustrative.



Weak Excluded Middle
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Add to intuitionistic logic the scheme

¬X _ ¬¬X

Also known as KC or Jankov’s logic.

The smallest modal companion for this is S4.2

S4 plus ⌃⇤X � ⇤⌃X
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Semantically, modal models are
S4 models that are convergent.

A justification counterpart called JT4.2 is

LP plus the following axiom scheme:

f(t, u):¬t:X _ g(t, u):¬u:¬X
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Very Informal Idea

Using factivity, (t:X ^ u:¬X) � ?

So ¬t:X _ ¬u:¬X is provable.

In any context we have one of ¬t:X or ¬u:¬X.

f(t, u):¬t:X _ g(t, u):¬u:¬X
says we have a reason for the one that holds



An Example
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[⌃⇤A ^ ⌃⇤B] � ⌃⇤(A ^B)
is a theorem of S4.2

negative occurrences
must become variables

We rewrite it as
[¬⇤¬⇤A ^ ¬⇤¬⇤B] � ¬⇤¬⇤(A ^B)
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A realization of it, provable in JT4.2 is

{¬[j4 · j3·!v5 · g(!v3, j2 · v5·!v9)]:¬v9:A^
¬[j5 · f(!v3, j2 · v5·!v9)]:¬v3:B} � ¬v5:¬[j1 · v9 · v3]:(A ^B)

j1, j2, j3, j4, j5 are given using Internalization.

and j2 internalizes a proof of

¬[j1 · v1 · v3]:(A ^B) � (v1:A � ¬v3:B)

For instance j1 internalizes a proof of

A � (B � (A ^B))
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No constructive proof of
realization is known for S4.2.

Non-constructively we have the following
very general result.

A Geach logic is one axiomatized over K
using schemas of the form

⌃k⇤lX � ⇤m⌃nX

(Maybe there is a constructive proof.
Details need checking.)
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All Geach logics have justification counterparts,
connected via a Realization theorem.

In particular, infinitely many modal logics
have justification counterparts.

In particular, S4.2.



Gödel-Dummet Logic
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Add to intuitionistic logic the scheme

(X � Y ) _ (Y � X)

The smallest modal companion for this is S4.3

S4 plus ⇤(⇤X � Y ) _⇤(⇤Y � X)

Also known as LC.
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Semantically, modal models are
S4 models that are linear.

A justification counterpart called J4.3 is

LP plus the following axiom scheme:

f(t, u):(t:X � Y ) _ g(t, u):(u:Y � X)
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Again, no constructive proof of
realization is known.

And S4.3 is not a Geach logic.

But we do have a very general
semantic result that applies.
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Earlier I mentioned semantics
for justification logics.

There are several.
The one we need now has become

known as Fitting semantics.

It is a possible world semantics.
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M = hG,R,V, Ei

model

possible
worlds

accessibility
atomic
truth

assignment

evidence
function
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E maps justification terms and formulas

to sets of possible worlds

Intuitively � 2 E(t,X) says,
at possible world �,

t is relevant evidence for X.

This is the new thing,
added to the Kripke machinery.
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M,� � t:X if and only if

Modal Condition: M,� � X for every

� 2 G with �R�

Evidence Condition: � 2 E(t,X)

X is ‘necessary’ at � and

t is relevant evidence for X at �
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LP as an example

M = hG,R,V, Ei

hG,R,Vi is an S4 model

· Condition: E(s,X � Y ) \ E(t,X) ✓ E(s · t, Y )

+ Condition: E(s,X) [ E(t,X) ✓ E(s+ t,X)

Monotonicity Condition: If �R� and � 2 E(t,X)
then � 2 E(t,X).

! Condition: E(t,X) ✓ E(!t, t:X).
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Theorem: if KL is a canonical modal logic and
JL is a candidate for a justification counterpart and

the canonical justification model for JL is
built on a KL frame,

then KL realizes into JL.
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This is how the result
mentioned earlier

about Geach logics is proved.

It also works for S4.3 and J4.3,
though S4.3 is not Geach.



A Different Kind
of Example
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I recently found a very simple
justification counterpart for

Gödel-Löb logic.

It isn’t the first version of
something like this.

Daniyar Shamkanov has a
different such logic.

I don’t know the relationships between them yet.
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First, recall the forgetful functor,
recursively replace t:X with ⇤X.

This maps justification Z to modal Z�
.

And also rather unexpectedly,
here realization has a constructive proof,

but I don’t know how to
prove it semantically.
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We build on justification logic J.

We add the axiom scheme

t:(u:X1 � X2) � g(t):X3

where X1, X2, and X3 are justification formulas

such that X�
1 = X�

2 = X�
3

Note that X1, X2, X3 don’t have to be the same!
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A Realization Example

The GL theorem

⇤(⇤(X _ Y ) � (X ^ Z)) � ⇤X
is realized by

v1:([v2 + g(a)]:(X _ Y ) � (X ^ Z)) � g(b):X

Where
v4:X `JGL a:(v5:(X _ Y ) � (X _ Y ))

and
v1:[g(a):(X _ Y ) � (X ^ Z)] `JGL b:(v4:X � X)

(both from internalization)
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A comment:

In

t:(u:X1 � X2) � g(t):X3

it looks like g(t) only depends on t,
and not on u.

Worked out examples show that
t generally is built up from

justification terms that include u.

I don’t really understand this yet.
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Second comment:

I don’t have a justification semantics for this logic.

Canonical machinery won’t work,
but I don't know what will.

Realization is proved constructively,
using a tableau system for GL.



Going Further
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Similar ideas work
for Grzegorczyk logic.

Add to LP

s:(t:(X1 � u:X2) � X3) � [g(s)]:X4,
where X�

1 = X�
2 = X�

3 = X�
4
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Again, realization is constructive,
but a semantics is missing.

And for both GL and Grz,
what benefit does

a justification counterpart bring?

That’s where things are at the moment.



Thank You
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